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1 Introduction

This is a short introduction on basic category theory with emphasis on proofs of results and
examples to help illustrate the categorical perspective. We include definitions and examples
of categories, functors and natural transformations we then take a deeper look into the idea
of universal properties such as adjoints, limits, initial and terminal objects, and monads. We
look at how these universal properties are linked as well as how they show up in categories
we are used to working with.

Category theory is a branch of maths developed in the 1940’s by Saunders Maclane and
Samuel Eilenberg as an offshoot of algebraic topology ([11]). Category theory aims to gener-
alise the construction of mathematical objects such as: mappings, products, quotient spaces
algebras and modules.

Category theory is a vast area of mathematics and this report only states the very begin-
nings, interesting areas to look at after reading this Include: Representables and The Yoneda
Lemma, Higher category theory and enriched category theory. This report has a ground up
approach where we aim to prove every result stated. We also include lots of worked exam-
ples. The main references for this report are from the books: Adámek - Herrlick - Strecker [1],
Leinster [5] and Riehl [9] some supporting theory is also from nCatLab [8] other references
used will be cited in the report.

1.1 Ethics

It is important to uphold the academic integrity and ethical principals when writing a paper
to ensure its credibility. In this paper we have, to our best ability, cited every author of books,
webpages and other sources where we have adapted or used their ideas and material. We
state where we have added our own proofs of theorems or examples. Additionally, we
expect the publication of this report will cause no harm to human kind, animals or nature.
The purpose of the paper is to compile ideas and research and add our own proofs and
perspective on the examples to promote the advancement of knowledge in the field.
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2 Categories

This section of notes adapted mainly from [5].

Definition 2.1. A category is a quadruple

C = (Ob(C ), homC (�,�), �(�,�,�), id�)

where:

1. Ob(C ) is a class. We call the elements of Ob(C ) C -Objects;

2. homC (�,�) is a function,

homC (�,�) : Ob(C )⇥Ob(C ) ! set,

(A,B) 7! homC (A,B)

where set is the class of all sets. The elements of homC (A,B) we call maps from A to
B;

3. Given A,B,C 2 Ob(C ), �(A,B,C) is a function,

�(A,B,C) : homC (B,C)⇥ homC (A,B) ! homC (A,C),

(g, f) 7! g �(A,B,C) f.

We call each �(A,B,C) composition;

4. For each A 2 Ob(C ), idA is an element of homC (A,A).

The following axioms are satisfied:

1. � satisfies associativity: Given A,B,C,D 2 Ob(C ), for each f 2 homC (A,B), g 2
homC (B,C) and h 2 homC (C,D) we have,

(h �(B,C,D) g) �(A,B,D) f = h �(A,C,D) (g �(A,B,C) f);

2. For each A 2 Ob(C ), the morphism idA acts as an identity with respect to �. That is,
given any two C -Objects, B,C 2 Ob(C ) for all f 2 homC (A,B) and g 2 homC (C,A)
we have:

f �(A,B,B) idA = f

and,
idA �(B,A,A) g = g.

Remark 2.2. The elements of each set homC (A,B) where A,B 2 Ob(C ) are also called
functions, arrows or morphisms, from A to B.

For simplicity we write � for any �(A,B,C). We will also write hom if the category we are
working with is clear.

Remark 2.3. In Definition 2.1 we have that each homC (A,B) is a set, this definition can
be changed so that these are not sets but classes, however in this report we will only use
sets. In the literature categories defined as in Definition 2.1 may be refered to as locally small

categories, see nCatLab [8] for more details.
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2.1 Examples

We can now see how some of the structures we already know fit into the framework of a
category.

Example 2.4. Let Set = (Ob(Set), hom, �, id), where:

1. Ob(Set) is the class of all sets;

2. Given any two Set-Objects, (X,Y ), hom(X,Y ) is the set of all functions between X
and Y ;

3. Given three sets X,Y, Z,

� : hom(Y, Z)⇥ hom(X,Y ) ! hom(X,Z),

(f, g) 7! g ⇧ f

where ⇧ is regular function composition;

4. For each X 2 Ob(Set),

idX : X ! X,

x 7! x.

Then � is associative since function composition is associative and given any X,Y 2 Ob(Set)
then for all f 2 hom(X,Y,) and h 2 hom(Y,X):

f � idX = f

and,
idX � h = h.

Therefore Set is a category.

Example 2.5. Let Grp be defined:

1. Ob(Grp) is the class of all groups;

2. Given any two (G, •), (H, ⇤) 2 Ob(Grp), hom((G, •), (H, ⇤)) is the set of all group
homomorphisms between (G, •) and (H, ⇤);

3. Given three groups (G, •), (H, ⇤), (N,⇤),

� : hom((G, •), (H, ⇤))⇥ hom((H, ⇤), (N,⇤)) ! hom((G, •), (N,⇤)),

(f, g) 7! g ⇧ f

where ⇧ is regular function composition. This is well defined meaning g ⇧ f is a group
homomorphism;

4. For each (G, •) 2 Ob(Grp), id(G,•) is the group homomorphism

id(G,•) : G ! G,

g 7! g.

5
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Then � is associative since function composition is associative and given any Grp-Objects
(G, •), (H, ⇤) 2 Ob(Grp) then for all f 2 hom((G, •), (H, ⇤)) and h 2 hom((H, ⇤), (G, •));

f � id(G,•) = f

and,
id(G,•) � h = h.

Therefore Grp is a category.

Example 2.6. Let K be a field then define VectK as:

1. Ob(VectK) is the class of all K-vector spaces where K is a field;

2. For any two vector spaces V and W , hom(V,W ) is the set of all K-linear maps between
V and W ;

3. � is regular function composition;

4. For each V 2 Ob(VectK), idV is the K-linear map:

idV : V ! V,

v 7! v.

Then VectK is a category since � is associative and for any f 2 hom(V,W ) and g 2 hom(W,V )

f � idV = f and idV � g = g.

The following example came from a lecture given by Dr Daniel Graves at the University
of Leeds.

Example 2.7. Let Top⇤
= (Ob(Top⇤

), hom, �, id) where:

1. Ob(Top⇤
) Is the class of all based topological spaces, ((X, ⌧X), x0);

2. Given two based topological spaces, ((X, ⌧X), x0) and ((Y, ⌧Y ), y0), each

homTop⇤(((X, ⌧X), x0), ((Y, ⌧Y ), y0))

is the set of continuous maps which sends x0 7! y0 between these spaces;

3. � is regular function composition. Given two base point preserving continuous maps,
f, g, then f � g is a base point preserving continuous map;

4. Given a based topological space ((X, ⌧X), x0), idX is the identity continuous map
which sends each point x 2 X to itself.

Top⇤ is a category since � is associative and each idX acts as an identity.

2.1.1 Example: Category of monoids

Definition 2.8. A monoid is a triple M = (Ms, ⇤, eM ) where:

1. Ms is a set, we call the underlying set of M;

6
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2. For any two elements a, b 2 Ms, ⇤ is a closed binary operation:

⇤ : Ms ⇥Ms ! Ms,

(a, b) 7! a ⇤ b;

3. eM is an element in Ms such that for all a 2 Ms,,

eM ⇤ a = a ⇤ eM = a;

4. ⇤ is associative; Given any two a, b, c 2 Ms

(a ⇤ b) ⇤ c = a ⇤ (b ⇤ c).

Remark 2.9. We will write a 2 M to mean a 2 Ms.

Definition 2.10. Let M = (Ms, ⇤M , eM ) and N = (Ns, ⇤N , eN ) be monoids. A monoid ho-

momorphism between M and N is a function, f : M ! N , which satisfies the following
axioms:

1. For any m1,m2 2 M , f(m1 ⇤N m2) = f(m1) ⇤N f(m2);

2. f(eM ) = eM .

With monoids and their morphisms defined, we can define the category of monoids.

Lemma 2.11. Let Mon be defined:

1. Ob(Mon) is the class of all monoids as defined in Definition 2.8;

2. For each M,N 2 Ob(Mon), hom(M,N) is the set of all monoid homomorphisms
between M and N ;

3. Given M,N,H 2 Ob(Mon) � is the function:

� : hom(M,N)⇥ hom(N,H) ! hom(M,H),

(f, g) 7! g ⇧ f,

where ⇧ is regular function composition.

This is well defined since given any two monoid homomorphisms f 2 hom(M,N)

and g 2 hom(M,H) and for each x, y 2 M we have,

g ⇧ f(x ⇤M y) = g(f(x ⇤M y))

= g(f(x) ⇤N f(y))

= g(f(x)) ⇤H g(f(y))

= g ⇧ f(x) ⇤H g ⇧ f(y)

and,

g ⇧ f(eM ) = g(f(eM ))

= g(eN )

= eH .

Since f and g are monoid homomorphisms. Hence g ⇧ h is a monoid homomorphism;

7
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4. For each M 2 Ob(Mon);

idM : Ms ! Ms,

m 7! m.

Then Mon is a category.

Proof. Firstly � is associative since it defined as function composition.
To show the condition on identities,given any f 2 hom(M,N) and g 2 hom(N,M) we

have for each m 2 M and n 2 N ;

f � idM (m) = f(idM (m))

= f(m)

and,

idM � g(n) = idM (g(n))

= g(n).

Hence idM acts as an identity with respect to function composition and Mon is a category.

The following Example 2.12 is adapted from [18].

Example 2.12 (Product Category). Let C and D be categories.
We can define the Product category C ⇥ D as follows:

1. The C ⇥ D �Objects are pairs (C,D) where C 2 Ob(C ) and D 2 Ob(C );

2. For each (C1, D1), (C2, D2) 2 Ob(C ⇥ D) the elements of homC⇥D((C1, D1), (C2, D2))

are the pairs (f, g) where f 2 homC (C1, C2) and g 2 homD(D1, D2);

3. Composition is defined,

�C⇥D : homC⇥D((C2, D2), (C3, D3)) ! homC⇥D((C1, D1), (C2, D2)),

((f2, g2), (f1, g1)) 7! (f2 �C f1, g2 �D g1);

4. Identities are defined for each (C,D) 2 Ob(C ⇥ D):

id(C,D) = (idC , idD).

First we show composition is associative: Given (f1, g1) 2 homC⇥D((C1, D1), (C2, D2)),
(f2, g2) 2 homC⇥D((C2, D2), (C3, D3)) and (f3, g3) 2 homC⇥D((C3, D3), (C4, D4)) we have,

((f3, g3) �C⇥D C ⇥ D(f2, g2)) �C⇥D (f1, g1) = (f3 �C f2, g3 �D g2) �C⇥D (f1, g1),

= (f3 �C f2 �C f1, g3 �D g2 �D g1),

= (f3, g3) �C⇥D (f2 �C f1, g2 �D g1),

= (f3, g3) �C⇥D ((f2, g2) �C⇥D (f1, g1)).

Hence �C⇥D is associative.

8
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We now show the identities indeed act as identities: Given (C,D) 2 Ob(C ⇥ D), and
(f1, g1) 2 homC⇥D((C1, D1), (C,D)), and (f2, g2) 2 homC⇥D((C,D), C2, D2) we have;

id(C,D) �C⇥D (f1, g1) = (idC , idD) �C⇥D (f1, g1)

= (idC �C f1, idD �D g1)

= (f1, g1)

and,

(f2, g2) �C⇥D id(C,D) = (f2, g2) �C⇥D (idC , idD)

= (f2 �C idC , g2 �D idD)

= (f2, g2).

Therefore id(C,D) acts as an identity with respect to composition. Hence C ⇥D is a category.

The following Definition 2.13 and Lemma 2.14 are adapted from Bartosz Milewsik video
lectures [7] and the book by Adámek - Herrlick - Strecker [1] page 22 onward.

Definition 2.13. Given a category C we define C op
= (Ob(C ), homop, �op, id):

1. The objects of C op are the objects of C ;

2. Given A,B 2 Ob(C ) for each f 2 hom(A,B) we have a fop 2 homC op(B,A);

3. Given fop 2 hom
op
(A,B) and gop 2 hom

op
(B,C),

gop �op(A,B,C) f
op

= (f �(C,B,A) g)
op.

Lemma 2.14. C op defined in Definition 2.13 is a category.

Proof. We first prove associativity of the composition for C op; given morphisms fop 2 hom
op
(A,B),

gop 2 hom
op
(B,C) and hop 2 hom

op
(C,D) we have,

hop �op (gop �op fop
) = hop �op (f � g)op

= f � g � h
= f � (g � h)
= (g � h)op �op fop

= (hop �op gop) �op fop.

Hence �op is associative.
Now we show the identities hold; given morphisms fop 2 hom

op
(A,B) and gop 2

hom
op
(B,C) we have,

fop �op idA = (idA � f)op = fop

and,
idC �op gop = (g � idC)op = gop.

Hence each idC acts as an identity. Therefore, C op is a category.

Remark 2.15. Since we can construct a dual category for any category, C every result we
prove about a general category gives us a dual result by looking from the perspective of the
dual category.

9
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2.1.2 Example: Monoid as a category

This section follows ideas from the video lectures of Bartosz Milewski [7]. We can define a
monoid in terms of the category structure as follows.

Definition 2.16 (Monoid as a category). A cat monoid is a category M with one object, m 2
Ob(M ).

We will show that each cat monoid is a monoid and each monoid is a cat monoid and so
the definitions are equivalent.

Lemma 2.17. Let M be a cat monoid with object m 2 Ob(M ). Then (hom(m,m), �, idm) is
a monoid.

Proof. hom(m,m) is a set by Definition 2.1.
For any g, f 2 hom(m,m) we have g � f 2 hom(m,m) and so � is a closed binary opera-

tion.
For each g 2 hom(m,m) we have,

idm � g = g

and,
g � idm = g.

� is associative since M is a category.
Hence, (hom(m,m), �, idm) is a monoid.

Definition 2.18. Let M = (Ms, ⇤, eM ) be a monoid. We define the category M as:

1. Ob(M ) has one object m;

2. Ms = homM (m,m);

3. �m,m,m = ⇤;

4. idm = eM .

Lemma 2.19. M as defined above in Definition 2.18 is a cat monoid.

Proof. Firstly, � is associative since ⇤ is associative as M is a monoid.
We also have for each f, g 2 hom(m,m),

f � idm = f ⇤ eM = f

and
idm � g = eM ⇤ g = g.

Therefore M is a one object category, hence a cat monoid.

Remark 2.20. Any group can also be seen as a one object category since a group is a special
case of a monoid as follows:

Suppose G is a group as a one object category then we have for each f 2 homG (g, g) a
morphism g 2 homG (g, g) such that,

f � g = idg

and,
g � f = idg.

10
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2.1.3 Example: Category of rings

Here we define what a ring is and how it fits into the framework of a category.

Definition 2.21. A ring with 1 is a triple R = (Rs,+,⇥) where Rs is a set called the under-

lying set of R, and +,⇥ are closed binary operations on Rs called addition and multiplication

respectively.
We also have that the following conditions are satisfied:

1. (R,+) forms an abelian group with identity denoted 0R;

2. (R,⇥, 1R) forms a monoid with identity 1R 6= 0R;

3. Multiplication is distributive across addition. Given , y, z 2 Rs,

x⇥ (y + z) = x⇥ y + x⇥ z

and,
(y + z)⇥ x = y ⇥ x+ z ⇥ x.

Definition 2.22. An abelian group (G,+) is a group with the commutativity property that is:
Given x, y 2 G,

x+ y = y + x.

Definition 2.23. A commutative ring with 1 is a ring with 1 R = (Rs,+,⇥) where multiplica-
tion is commutative, that is:

Given x, y 2 Rs,
x⇥ y = y ⇥ x.

Definition 2.24. Given two rings with 1, R = (Rs,+R,⇥R) and S = (SS ,+S ,⇥S) a function
f : RS ! SS is called a ring homomorphism if given x, y 2 Rs the following axioms hold:

1. f(x+R y) = f(x) +S f(y);

2. f(x⇥R y) = f(x)⇥S f(y);

3. f(1R) = 1S .

Corollary 2.25. Let R and S be a rings with 1 and f : RS ! SS be a ring homomorphism
then:

f(0R) = 0S .

Proof.

f(1R) = f(1R +R 0R)

= f(1R) +S f(0R)

= 1S +S f(0R)

= 1S ,

hence, f(0R) = 0S .

Remark 2.26. A commutative ring homomorphism is a ring homomorphism between com-
mutative rings with 1.

Definition 2.27. Define the quadruple Rng = (Ob(Rng), homRng, �, id) where:

11
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1. Ob(Rng) is the class of all rings with 1;

2. Given R,S 2 Ob(Rng), homRng(R,S) is the set of all ring homomorphisms between
R and S;

3. � is regular function composition;

4. Given R 2 Ob(Rng), idR is the identity with respect to function composition. idR is a
ring homomorphism since for each x, y 2 R,

idR(x+R y) = x+R y = idR(x) +R idR(y)

and,
idR(x⇥R y) = x⇥R y = idR(x)⇥R idR(y)

and,
idR(1R) = 1R.

Definition 2.28. Define the quadruple CRng = (Ob(Rng), homCRng, �, id) where:

1. Ob(CRng) is the class of all rings with 1;

2. Given R,S 2 Ob(CRng), homCRng(R,S) is the set of all ring homomorphisms be-
tween R and S;

3. � is regular function composition;

4. Given R 2 Ob(CRng), idR is the identity with respect to function composition.
idR is a commutative ring homomorphism since for each x, y 2 R,

idR(x+R y) = x+R y = idR(x) +R idR(y)

and,
idR(x⇥R y) = x⇥R y = idR(x)⇥R idR(y)

and,
idR(1R) = 1R.

Lemma 2.29. Both Rng and Crng as defined in Definition 2.27 and Definition 2.28 are cat-
egories.

Proof. We prove the category Rng, the proof for Crng follows trivially.
Firstly, � is associative since regular function composition is associative.
Given each R 2 Ob(Rng), idR acts as an identity; Given f 2 homRng(R,S) and g 2

homCRng(S,R)

f � idR = f

and,
idS � g = g.

Some other well know categories can be found in Adámek - Herrlick - Strecker [1]
and include: TopC ; objects are topological spaces and morphisms are continuous maps
or TopH ; objects are topological spaces and morphisms are homeomorphisms of topolog-
ical spaces and Met; objects are metric spaces with morphisms continuous maps between
metric spaces.

We can now translate some familiar concepts from the theories we are used to and trans-
late them to the language of category theory. First we look at an isomorphism.

12
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Definition 2.30. For a category C a morphism f 2 hom(A,B) is called an isomorphism if
there exists a g 2 hom(B,A) such that f � g = idB and g � f = idA.

Theorem 2.31. Let X,Y 2 Ob(Set) and f 2 hom(X,Y ) then f is an isomorphism if and
only if f is a bijection.

Proof. For any two objects X,Y 2 Ob(Set) suppose a map f 2 hom(X,Y ) is a bijection
therefore f has an inverse f�1 2 hom(X,Y ) where, f �f�1

= idX and f�1 �f = idY . Hence,
every bijection is a category isomorphism.

Suppose f 2 hom(G,H) is a isomorphism then there exists a g 2 hom(H,G) such that
f � g = idH then f is a bijection with inverse f�1

= g. Therefore the set of category isomor-
phisms is exactly the set of group isomorphisms in Set.

Theorem 2.32. Let G,H 2 Ob(Grp) and f 2 hom(G,H) then f is an isomorphism if and
only if f is a group isomorphism.

Proof. For any two objects G,H 2 Ob(Grp) suppose a morphism f 2 hom(G,H) is a group
isomorphism then f is a bijection so has an inverse f�1 2 hom(H,G) where, f � f�1

= idH
and f�1 � f = idG. Hence, every group isomorphism is a category isomorphism. Suppose
f 2 hom(G,H) is a category isomorphism then there exists a g 2 hom(H,G) such that
f � g = idH then f is a bijection with inverse f�1

= g hence a group isomorphism. Therefore
the set of category isomorphisms is exactly the set of group isomorphisms in Grp.

2.2 Subcategories

The following definitions come from nCatLab [8].

Definition 2.33. Let C be a category. Then a subcategory, D = (Ob(D), hom, �, id) is defined:

1. Ob(D) is a subclass of Ob(C );

2. For each X,Y 2 Ob(C), homD(X,Y ) is a subset of homC (X,Y );

3. If f 2 homD(X,Y ) then X,Y 2 D ;

4. If f 2 homD(X,Y ) and g 2 homD(Y, Z) then g � f 2 homD(X,Z);

5. For all X 2 Ob(D), idX 2 homD(X,X).

Remark 2.34. Every subcategory D of C is a category since the composition is associative
and we have identities.

Definition 2.35. Let C be a category and D be a sub category of C .
We say D is:

1. A full subcategory if for all X,Y 2 Ob(D), if f 2 homC (X,Y ) then f 2 homD(X,Y );

2. A wide subcategory if for all X 2 Ob(C ), X 2 Ob(D).

The following example followed from a discussion with the supervisor.

Example 2.36. Let MetC be the category whose objects are metric spaces and morphisms
are continuous maps between spaces. Let MetI be the category whose objects are met-
ric spaces and morphism are isometries; given two metric spaces X,Y 2 Ob(MetI), f 2
homMetI(X,Y ) if for x, y 2 X ,

dX(x, y) = dY (f(x), f(y)).

Then MetI is a wide, not full, subcategory of MetC, since every isometry is a continuous
map but not every continuous map is an isometry.

13
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Example 2.37. Recall the categories CRng and Rng defined in Subsection 2.1.3. CRng is a
full but not wide subcategory of Rng, since every commutative ring is a ring but there exist
rings that are not commutative but we have for two commutative rings R,S 2 Ob(CRng)
if f 2 homCRng(R,S) then f 2 homRng(R,S).

14
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3 Functors

Definitions and examples in this section come from various references including Leinster
[5], Adámek - Herrlick - Strecker [1] can define a notion of morphisms between categories
as follows.

Definition 3.1. Let C and D be categories. A functor is a pair F = (F ob, F hom
) : C ! D

where:

1. F ob is a function,
F ob

: Ob(C ) ! Ob(D);

2. For each A,A0 2 Ob(C ), F hom is a function,

F hom
: homC (A,A

0
) ! homD(F

ob
(A), F ob

(A0
)),

f 7! F hom
(f);

The following axioms are satisfied:

1. For all f 2 hom(A,A0
) and f 0 2 hom(A0, A00

),

F hom
(f 0 �C f) = F hom

(f 0
) �D F hom

(f)

where �C and �D are the compositions for C ,D respectively;

2. For all A 2 Ob(C ),
F hom

(idA) = idF ob(A).

Remark 3.2. We will just write F for both F ob and F hom and know which one is being used
by what object it is acting on.

Definition 3.3. Given a category C let F : C ! C be a functor from C to C , then we call F
an endofunctor.

3.1 Examples

3.1.1 Forgetful functor for monoids

One of the easiest examples of a functor is the forgetful functor which, informally, takes any
category where the objects are sets with added structure and ’forgets’ any extra structure.
These types of functors play an important role in the theory later in Section 5 and Section 7.
We will see the case for monoids.

Definition 3.4 (Forgetful functor for monoids). Let Mon be the category of monoids as
defined in Lemma 2.11. We define U : Mon ! Set as:

1.

U0
: Ob(Mon) ! Ob(Set)

(G, ⇤, eG) 7! G;

2.

U1
: homSet(G,H) ! homMon(U(G), U(H))

f 7! f.

15
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Lemma 3.5. The U : Mon ! Set defined above in Definition 3.4 is a functor.

Proof. Let U be the forgetful functor for monoids, then:

1. For all f 2 hom(G,H) and g 2 hom(H, J),

U(h �Mon g) = U(h) �Set U(g)

since U(g) = g, U(h) = h and �Mon is the same as �Set;

2. For all G 2 Ob(Mon),
U(idG) = idG = idU(G).

Hence U is a functor.

3.1.2 Free monoid functor

Informally, free functors take a set and aim to add structure to form a different algebraic
object. For example we will give the free functor for monoids, adapted from nCatLab [8].
Free functors seem to be doing the opposite of forgetful functors, we will later make this
notion rigorous in Section 5 where these functors are ’adjoint’.

Definition 3.6. Let X be a set. The free monoid on X is the triple (�(X), ⇤,?) where:

�(X) = {(x1, x2, . . . , xn)|n 2 Z+, x1, x2, . . . , xn 2 X} [ {?}.

The elements of �(X) are called lists in X .
For any two lists x = (x1, x2, . . . , xn), y = (y1, y2, . . . , ym) 2 �(X),

x ⇤ y = (x1, x2, . . . , xn, y1, y2, . . . , ym)

and ⇤ is called concatenation.
? = () is defined as the list with no elements.

Lemma 3.7. For any set X the free monoid on X is a monoid.

Proof. Let X be a set and (�(X), ⇤,?) the free monoid on X then for any three lists x, y, z 2
�(X) we have,

x ⇤ (y ⇤ z) = (x1, x2, . . . , xn) ⇤ ((y1, y2, . . . , ym) ⇤ (z1, z2, . . . , zk))
= (x1, x2, . . . , xn) ⇤ (y1, y2, . . . , ym, z1, z2, . . . , zk)

= (x1, x2, . . . , xn, y1, y2, . . . , ym, z1, z2, . . . , zk)

= (x1, x2, . . . , xn, y1, y2, . . . , ym) ⇤ (z1, z2, . . . , zk)
= ((x1, x2, . . . , xn) ⇤ (y1, y2, . . . , ym)) ⇤ (z1, z2, . . . , zk)
= (x ⇤ y) ⇤ z

and,

x ⇤? = (x1, x2, . . . , xn) ⇤?
= (x1, x2, . . . , xn)

= x

= ? ⇤ (x1, x2, . . . , xn)
= ? ⇤ x.

Hence concatenation is associative with identity ?.
Therefore (�(X), ⇤,?) is a monoid.

16
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Lemma 3.8. Given two sets X,Y and a function f : X ! Y . There is an induced monoid
homomorphism,

f� : (�(X), ⇤,?) ! (�(Y ), ⇤,?)

where for each (x1, x2, . . . , xn) 2 �(X)

(x1, x2, . . . , xn) 7! (f(x1), f(x2), . . . , f(xn)),

and,
? 7! ?.

Proof. Let f� be defined as above then given any x, y 2 (�(X), ⇤,?),

f�(x ⇤ y) = f�((x1, x2, . . . , xn) ⇤ (y1, y2, . . . , ym))

= f�((x1, x2, . . . , xn, y1, y2, . . . , ym))

= (f(x1), f(x2), . . . , f(xn), f(y1), f(y2), . . . , f(ym))

= (f(x1), f(x2), . . . , f(xn)) ⇤ (f(y1), f(y2), . . . , f(ym))

= f�((x1, x2, . . . , xn)) ⇤ f�((y1, y2, . . . , ym))

= f�(x) ⇤ f�(y)

and,

f�(?) = ?.

Hence f� is a monoid homomorphism.

Definition 3.9. Define the free monoid functor F : Set ! Mon as:

1. For each X 2 Ob(Set),

F : Ob(Set) ! Ob(Mon),

X 7! (�(X), ⇤,?);

2. For any X,Y 2 Ob(Set),

F : homSet(X,Y ) ! homMon(F (X), F (Y )),

f 7! f� .

Lemma 3.10. F : Set ! Mon defined above in Definition 3.9 is a functor.

Proof. For any X,Y, Z 2 Ob(Set), let f 2 hom(X,Y ) and g 2 hom(Y, Z). Then for any list
(x1, x2, . . . , xn) 2 �(X) we have,

F (g � f)(x1, x2, . . . , xn) = (g � f(x1), g � f(x2), . . . , g � f(xn))
= F (g)(f(x1), f(x2), . . . , f(xn))

= (F (g) � F (f))(x1, x2, . . . , xn).

For any X 2 Ob(Set), idX is the identity with respect to function composition.

F (idX)(x1, x2, . . . , xn) = (idX(x1), idX(x2), . . . , idX(xn))

= (x1, x2, . . . , xn)

= idF (X)(x1, x2, . . . , xn).

Therefore, F is a functor.
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3.1.3 The Yoneda Embeddings hA and hB

An important functor we will use later in Section 5 is the hom functor. This definition is
adapted from the Wikipedia article [14]. The following definition is similar to the definition
of functors in Definition 3.1 however the morphisms and composition are reversed. See
Wiki [13] for more details.

Definition 3.11. Let C and D be categories. A contravariant functor is a pair F = (F ob, F hom
) : C !

D where:

1. F ob is a function,
F ob

: Ob(C ) ! Ob(D);

2. For each A,A0 2 Ob(C ), F hom is a function,

F hom
: homC (A,A

0
) ! homD(F

ob
(A0

), F ob
(A)),

f 7! F hom
(f);

The following axioms are satisfied:

1. For all f 2 hom(A,A0
) and f 0 2 hom(A0, A00

),

F hom
(f 0 �C f) = F hom

(f 0
) �D F hom

(f)

where �C and �D are the compositions for C ,D respectively;

2. For all A 2 Ob(C ),
F hom

(idA) = idF ob(A).

Lemma 3.12. Let C be a category and Set be the category of sets as in Example 2.4.

1. For all A 2 Ob(C ) we define the functor

hA : C ! Set

where for each C 2 Ob(C ),
C 7! homC (A,C)

and for each f 2 homC (X,Y ),
f 7! hom(A, f)

where,

homC (A, f) : homC (A,X) ! homC (A, Y ),

g 7! f � g;

2. For all B 2 Ob(C ) we define the contravariant functor

h
B
: C op ! Set

where for each C 2 Ob(C ),
C 7! homC (C,B)

and for each h 2 homC op(X,Y ),

h 7! hom(h,B),

where,

hom(h,B) : homC (Y,B) ! homC (X,B),

g 7! g � h.

18
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Proof. First we prove hA is a functor.
Let C 2 Ob(C ) then given f 2 homC (A,C),

hA(idC)(f) = homC (A, idC)(f)

= f

= idhomC (A,C)(f).

Hence identities are preserved. We also have for any f 2 homC (X,Y ) and g 2 homC (Y, Z)

then given h 2 homC (A,X),

hA(g � f)(h) = homC (A, g � f)(h)
= g � f � h
= homC (A, g) � homC (A, f)(h)

= (hA(g) � hA(f))(h).

Hence composition is preserved. Therefore hA is a functor.
Now we show h

B is a contravariant functor. Let C 2 Ob(C ) then given f 2 homC (C,B):

h
B
(idC)(f) = homC (idC , B)(f)

= f

= idhomC (C,B)(f).

Hence identities are preserved. We also have for any f 2 homC (X,Y ) and g 2 homC (Y, Z)

then given h 2 homC op(Z,B),

h
B
(g � f)(h) = homC (g � f,B)(h)

= h � g � f
= homC (f,B) � homC (g,B)(h)

= (h
B
(f) � hB(g))(h).

Hence composition is preserved. Therefore h
B is a contravariant functor.

Definition 3.13. Let C be a category then C op ⇥ C is a category by Definition 2.13 and
Example 2.12. We define the hom functor, h: C op ⇥ C ! Set, as follows: Given (C1, C2) 2
Ob(C op ⇥ C ),

(C1, C2) 7! homC (C1, C2).

For each fop 2 homC (C1, C2) and g 2 homC (C 0
1, C

0
2),

(fop, g) 7! homC (f, g),

where,

homC (f, g) : homC (C1, C
0
1) ! homC (C2, C

0
2),

h 7! g � h � f.

Lemma 3.14. h as defined in Definition 3.13 is a functor.

Proof. Let (fop

1 , g1) 2 homC op⇥C ((C1, C2), (C 0
1, C

0
2)), and (fop

2 , g2) 2 homC op⇥C ((C 0
1, C

0
2), (C

00
1 , C

00
2 )),

we then have,

h((fop

1 , g1) � (fop

2 , g2)) = h((fop

1 � fop

2 , g1 � g2)),
= homC (f

op

1 �op fop

2 , g1 � g2),
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where homC (f2 � f1, g1 � g2) is the function which takes h 2 homC (C1, C 0
1),

h 7! g1 � g2 � f2 � f1.

Hence is the same as the function,

homC (f1, g1) � homC (f2, g2) = h((fop

1 , g1)) � h((fop

2 , g2)).

Given (idC1 , idC2) 2 homC op⇥C ((C1, C2), (C1, C2)) we have,

h((idC1 , idC2)) = homC (idC1 , idC2),

which is the function which sends h 2 homC (C1, C 0
1)

h 7! idC1 � h � idC2 = h.

Therefore, h is a functor.

3.1.4 The Identity functor

For every category there exists a functor from that category to itself called the identity func-
tor we will now define.

Definition 3.15. For any category C let idC : C ! C be the identity functor on C defined:

1. For each X 2 Ob(C ),
idC (X) = X.

2. Given two C -Objects, X,Y 2 Ob(C ), for each f 2 hom(X,Y ),

idC (f) = f.

Lemma 3.16. idC as defined above in Definition 3.15 is a functor.

Proof. Given any X,Y, Z 2 C , let f 2 hom(X,Y ) and g 2 hom(Y, Z) be maps. Then,

idC (f � g) = f � g
= idC (f) � idC (g).

Hence composition is preserved.
For all X 2 Ob(C )

idC (idX) = idX .

Hence identities are preserved. Therefore idC is a functor.

3.1.5 More examples of functors

Here are some more examples of functors.
The following example followed from a meeting with the supervisor.

Example 3.17. Let the power set functor P : Set ! Set be defined:
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1. For each X 2 Ob(Set),
X 7! P(X)

where P(X) is the power set of X ,

P(X) = {A | A ✓ X};

2. Given two Set-Objects X,Y 2 Ob(Set) then for each f 2 hom(X,Y ),

P (f) : P (X) ! P (Y ),

A 7! f [A]

where f [A] is the image of A under f ,

f [A] = {f(a) | a 2 A}.

Clearly, P (f) is a function P (X) ! P (Y ), so it is in hom(P (X), P (Y )).

Given any X,Y, Z 2 Set, let f 2 hom(X,Y ) and g 2 hom(Y, Z) be functions. Then for all
A 2 P (X),

P (g � f)(A) = (g � f)[A])

= g[f [A]]

= P (g) � P (f)(A).

For each X 2 X, idX is the identity function with respect to function composition. For all
A 2 P (X),

P (idX)(A) = idX [A]

= A

= idP (X)(A)

Therefore P is a functor.

The following Example 3.18 uses ideas from the Wikipedia article [15].

Example 3.18. Let GL2 : CRng ! Grp be defined:

1. For each CRng-Object R 2 Ob(CRng),

GL2(R) =

⇢
a b
c d

�
|a, b, c, d 2 R, ab� cd is invertable in R

�

GL2(R) 2 Grp since each matrix is invertable, the matrix:

1R 0R

0R 1R

�

acts as an identity under matrix multiplication and matrix multiplication is associative.

2. Given R,S 2 Ob(CRng) then for each f 2 hom(R,S),

GL2(f) : GL2(R) ! GL2(S),
a b
c d

�
7!


f(a) f(b)
f(c) f(d)

�
.
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Then for M,N 2 GL2(R) we have,

GL2(f)(M ⇥GL2(R) N) = GL2(f)

✓
aM ⇥R aN +R bM ⇥R cN aN ⇥R bM +R bN ⇥R dN
cM ⇥R aN +R dM ⇥R cN cM ⇥R bN +R dM ⇥ dN

�◆

=


f(aM ⇥R aN +R bM ⇥R cN ) f(aN ⇥R bM +R bN ⇥R dN )

f(cM ⇥R aN +R dM ⇥R cN ) f(cM ⇥R bN +R dM ⇥R dN )

�

=


f(aM )⇥S f(aN ) +S f(bM )⇥S f(cN ) f(aN )⇥S f(bM ) +S f(bN )⇥S f(dN )

f(cM )⇥S f(aN ) +S f(dM )⇥S f(cN ) f(cM )⇥S f(bN ) +S f(dM )⇥S f(dN )

�

= GL2(f)(M)⇥GL2(S) GL2(f)(N)

and,

GL2(f)(1GL2(R)) = GL2(f)

✓
1R 0R

0R 1R

�◆

=


f(1R) f(0R)
f(0R) f(1R)

�

=


1S 0S

0S 1S

�
, since f is a ring homomorphism

= 1GL2(S).

Therefore GL2(f) is defined as a group homomorphism.
We now show GL2 is a functor by proving the axioms hold. Given any R,S, T 2 Ob(CRng),
let f 2 hom(R,S) and g 2 hom(S, T ) be ring homomorphisms. Then for all

M =


a b
c d

�
2 GL2(R)

we have,

GL2(g � f)(M) =


(g � f)(a) (g � f)(b)
(g � f)(c) (g � f)(d)

�

=


g(f(a)) g(f(b))
g(f(c)) g(f(d))

�

= GL2(g)

✓
f(a) f(b)
f(c) f(d)

�◆

= (GL2(g) �GL2(f))(M)

and,

GL2(idR)(M) =


idR(a) idR(b)
idR(c) idR(d)

�

=


a b
c d

�

= M

= idGL2(R)(M).

Therefore GL2 is a functor.

Remark 3.19. Example 3.18 can be extended to GLn with n⇥ n matrices.
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Lemma 3.20. Let R be a ring with 1. Let R⇤ be the set of all r 2 R such that,

rr0 = r0r = 1R

for some r0 2 R. Then (R⇤,⇥R) forms a group called the group of units of R.

Proof. We have an identity 1R since for each r 2 R⇤,

r1R = r = 1Rr

since R is a ring.
Given r 2 R⇤ there exists r0 2 R⇤ such that,

rr0 = r0r = 1R.

Hence each r has inverse r0.
We know ⇥S is associative since R is a ring.
Finally given r, s 2 R⇤,

rss0r0 = r1Rr
0

= rr0

= 1R

= s0s

= s01Rs

= s0r0rs.

Hence rs 2 R⇤ and therefore R⇤ is a group.

Example 3.21. Let Units : Crng ! Grp be defined:

1. For each R 2 Crng,
Units(R) = R⇤

as in Lemma 3.20;

2. Given R,S 2 Ob(Crng), for each f 2 hom(R,S),

Units(f) : R⇤ ! S⇤,

r 7! f(r)

and f(r) 2 S⇤ since,

1S = f(1R)

= f(rr0)

= f(r)f(r0), since f is a ring homomorphism.

We also have Units(f) is a group homomorphism since f is a ring homomorphism.

We will now show that Units is indeed a functor.
Given any R,S, T 2 Ob(Crng), let f 2 hom(R,S) and g 2 hom(S, T ). Then for all r 2 R,

Units(g � f)(r) = g � f(r)
= Units(g) �Units(f)(r).
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Hence composition is preserved. We also have,

Units(idR)(r) = idR(r)

= r

= idR⇤(r).

Hence identities are preserved. Therefore Units is a functor.

The following example followed from a lecture on Topology given by Dr Daniel Graves
at the University of Leeds.

Example 3.22. Let Top⇤ be the category of based topological spaces as defined in Example
2.7 and Grp be the category of groups as defined in Example 2.5.

The fundamental group functor ⇡1 : Top⇤ ! Grp be defined:

1. For each ((X, ⌧X), x0) 2 Ob(Top⇤
),

((X, ⌧X), x0) 7! ⇡1(((X, ⌧X), x0))

where ⇡1(((X, ⌧X), x0)) is the fundamental group of X based at x0. The group opera-
tion ⇤ is defined by join of paths;

2. For a given continuous map f 2 homTop⇤(((X, ⌧X), x0), ((Y, ⌧Y ), y0)) we define the
induced group homomorphism:

f 7! f⇤
: ⇡1(((X, ⌧X), x0)) ! ⇡1(((Y, ⌧Y ), y0))

where for each [�] 2 ⇡1(((X, ⌧X), x0)),

[�] 7! [f � �].

Here [�] is the equivalence class of a loop � based at x0.

f⇤ is well defined since for any two loops �1 and �2 based at x0 where [�1] = [�2] we
have a path homotopy,

H : [0, 1]⇥ [0, 1] ! X

and therefore,
f �H : [0, 1]⇥ [0, 1] ! Y,

is a path homotopy between f � �1 and f � �2 hence f⇤ is well defined.

The group identity for ⇡1(((X, ⌧X), x0)) is the equivalence class [�x0 ] where �x0 is the
constant path at x0 so,

[f � �x0 ] = [�f(x)] = [�y0 ]

where �y0 is the constant path at f(x0). Therefore f⇤ preserves group identities.

We also have for any two [�1], [�2] 2 ⇡1(((X, ⌧X), x0))

f⇤
([�1] ⇤ [�2]) = f⇤

([�1 ⇤ �2])
= [f � �1 ⇤ �2]
= [f � �1 ⇤ f � �2]
= [f � �1] ⇤ [f � �2]
= f⇤

([�1]) ⇤ f⇤
([�2]).

Therefore f⇤ is a group homomorphism.
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To check ⇡1 is a functor we check it preserves identities idX 2 homTop⇤(X,X), given a path
equivalence class [�] 2 ⇡1(((X, ⌧X), x0)).

⇡1(idX)([�]) = [idX � �]
= [�]

= id⇡1(((X,⌧X),x0))([�]).

Also given f 2 homTop⇤(((X, ⌧X), x0), ((Y, ⌧Y ), y0)) and g 2 homTop⇤(((Y, ⌧Y ), y0), ((Z, ⌧Z), z0))
we have,

(g � f)⇤([�]) = [g � f � �]
= g⇤([f � �])
= g⇤(f⇤

([�]))

= g⇤ � f⇤
([�]).

Therefore ⇡1 is a functor.

The following example can be found in Leinster [5].

Example 3.23. Recall for each monoid M we have a one object category defined in subsec-
tion 2.1.2, also recall the category Set in Example 2.4.

Given a set X , we define a functor

LX : M ! Set

where for the unique object M 2 M ,
M 7! X,

and for each morphism g 2 homM (M,M),

g 7! LX(g)

where,

LX(g) : X ! X,

x 7! gx.

The function LX(g) is the left action of g on X .
We see for each x 2 X ,

LX(idM )(x) = idMx

= x

= idLX(M)

and for g, g0 2 homM (M,M) and each x 2 X ,

LX(g0 � g)(x) = g0 � gx
= g0gx

= LX(g0) � LX(g)(x).

Therefore LX is a functor. For each set X 2 Ob(Set) the functor LX represents the left action
of M on that set.
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3.2 Functor composition

Ideas from this section are adapted from Leinster [5] and Adámek - Herrlick - Strecker [1].

Definition 3.24. Let C , D and E be categories and F1 : C ! D , F2 : D ! E functors. Then
we define F1 � F2 : C ! E :

1.

(F1 � F2)
ob
: Ob(C ) ! Ob(E ),

A 7! F2(F1(A));

2.

(F1 � F2)
hom

: homC (A,A
0
) ! homE ((F1 � F2)

ob
(A), (F1 � F2)

ob
(A0

),

f 7! F2(F1(f)).

Remark 3.25. Again we will drop notation as in Remark 3.2 for simplicity.

Lemma 3.26. F1 � F2 : C ! E as defined above is a functor.

Proof. Let f 2 homC (A,A0
) and g 2 homC (A0, A00

) then,

F1 � F2(f �C g) = F2(F1(f �C g))

= F2(F1(f) �D F1(g)), since F1 is a functor

= F2(F1(f)) �E F2(F1(g)), since F2 is a functor

= F1 � F2(f) �E F1 � F2(g).

Given A 2 Ob(C )

F1 � F2(idA) = F2(F1(idA))

= F2(idF1(A))

= idF2(F1(A))

= idF1�F2(idA).

Therefore F1 � F2 is a functor.

Remark 3.27. For functors F,G we will write FG = F �G and If F is an endofunctor, then
we can write F 2

= F � F .
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4 Natural transformations

Definition 4.1. Let C ,D be categories. Let F : C ! D , and G : C ! D be functors. A natural

transformation, ⌘ : F ) G between F and G is an assignment which sends each C � Object,
A, to a map ⌘A 2 hom(F (A), G(A)), where the naturality condition holds:

Given A,A0 2 Ob(C ), then for each map f 2 hom(A,A0
),

⌘A0 � F (f) = G(f) � ⌘A. (4.1)

Equation 4.1 is equivalent to saying the diagram,

F (A) F (A0
)

G(A) G(A0
)

F (f)

⌘A ⌘A0

G(f)

commutes.

We call ⌘A the component of ⌘ at A.

We see some examples below.

4.1 Examples

Example 4.2. Let P be the power set functor as in 3.17 and idSet be the identity functor on
Set as in 3.15. We have natural transformation, ⌘ : idSet ) P . such that, for each X 2
Ob(Set),

⌘X : idSet(X) ! P (X),

x 7! {x}.

We need to show the naturality condition holds. Let X,Y 2 Ob(Set) and f 2 hom(X,Y ).
For each x 2 idSet(X),

(⌘Y � idSet(f))(x) = ⌘Y (f(x))

= {f(x)}
= P (f)({x})
= (P (f) � ⌘X)(x).

Therefore the naturality condition holds and ⌘ is a natural transformation.

Another example of a natural transformation is given below.

Example 4.3. Let P : Set ! Set be the power set functor as defined in 3.17 and P 2
: Set !

Set be the composition of P with its self as defined in 3.24. Then we can define µ : P 2 ) P
where, for each X 2 Ob(Set), we have,

µX : P 2
(X) ! P (X),

A 7!
[

I2A
I.
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We need to show the naturality condition holds. Since A is a set of subsets of X then
S

I2A I
will be a subset of X . Furthermore for a set A,

S
I2P(A) I = A. Then given X,Y 2 Ob(Set)

and f 2 hom(X,Y ). For each A 2 P 2
(X),

(µY � P 2
(f))(A) = µY (f [A])

=

[

I2f [A]

I

= P 2
(f)(

[

I2A
I)

= P 2
(f) � µX(A).

Where the third equality is true since the union of an image of a set is equal to the image of
the union. Therefore we have defined a natural transformation.

These two natural transformations have some importance we discuss later. Here is an-
other example of a natural transformation.

Example 4.4. Recall the functors GL2 : Crng ! Grp and Units : Crng ! Grp defined in
Example 3.18 and Example 3.21 respectively,

Let det : GL2 ) Units be defined for each R 2 Crng as,

det
R

: GL2(R) ! R⇤


a b
c d

�
7! a⇥R d+R �b⇥R c.

Here �b is the additive inverse of b.
a⇥R d+R �b⇥R c 2 R⇤ since it is invertable in R.
We first show for each R 2 Crng that detR is a group homomorphism. Given M,N 2

GL2(R), we know det(MN) = det(M) det(N).
We need to show the naturality condition holds. Given R,S 2 CRng and any f 2

hom(R,S) then for each

a b
c d

�
2 GL2(R) we have,

(Units(f) � det
R

)

✓
a b
c d

�◆
= Units(f)(a⇥R d+R �b⇥R c)

= f(a⇥R d+R �b⇥R c)

= f(a)⇥S f(d) +S �f(b)⇥S f(c)

= det
S

✓
f(a) f(b)
f(c) f(d)

�◆

= (det
S

�GL2(f))(


a b
c d

�
).

The third equality is true since additive inverses are preserved under ring homomorphisms.
Hence the naturality condition holds, therefore det is a natural transformation.

The following example comes from Leinster [5] (Page 29 Example 1.3.4).

Example 4.5. Let X,Y 2 Ob(Set) be sets then recall from Example 3.23 we have functors
LX and LY representing left actions of the monoid M on the sets X and Y respectively.
There is a natural transformation

↵ : LX ) LY
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where for the single object m 2 Ob(M ) we have a map ↵m 2 homSet(X,Y ) where the
naturality condition implies for each g 2 homM (M,M),

↵M � LX(g) = LY (g) � ↵M

so for an element x 2 X ,
↵M (Lg(x)) = LY (g)(↵M (x)),

that is,
↵M (gx) = g↵M (x),

So the natural transformation ↵ represents a map of the sets X , Y preserving left action from
M .

4.2 Composition of natural transformations

There are different ways to compose natural transformations; we can take natural transfor-
mations with the same domain and co-domain (vertical composition) or we can compose a
natural transformation with a functor which leads to an alternative definition of composi-
tion (Horizontal composition).

4.2.1 Vertical composition of natural transformations

First we compose two natural transformations whose functors they act on have the same
domain and co-domain as demonstrated in the pasting diagram below. Ideas from this
section are thanks to Riehl [9] and Leinster [5].

C D

F

F
0

F
0

F
00

µ

⌘

Definition 4.6 (Vertical composition). Let C ,D be categories, F,F0,F00
: C ! D be functors

and ⌘ : F ) F 0 and µ : F 0 ) F 00 natural transformations. We then define

µ · ⌘ : F ) F 00

where for each X 2 C ,
(µ · ⌘)X = µX � ⌘X .

Remark 4.7. We may also use the notation (µ � ⌘)X to mean (µ · ⌘)X

Lemma 4.8. The vertical composition of two natural transformations as defined above in
Definition 4.6 is a natural transformation.

Proof. We need to prove that for µ · ⌘ the naturality condition holds. Given X,Y 2 Ob(C )

and a map f 2 hom(X,Y ) we have,

(µ · ⌘)Y � F (f) = µY � (⌘Y � F (f))

= µY � (F 0
(f) � ⌘X) since ⌘ is a natural transformation,

= (F 00
(f) � µX) � ⌘X since µ is a natural transformation,

= F 00
(f) � (µ · ⌘)X .

There for the naturality condition holds and therefore the composition of two natural trans-
formations is a natural transformation.
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4.2.2 Horizontal composition of natural transformations

First we see how natural transformations can compose with functors. The diagram below
illustrates how this should work.

B C D EF

G

G
0

F
0

⌘ .

Definition 4.9. Let B,C ,D ,E be categories, F: B ! C , G,G0
: C ! D and F

0
: D ! E

be functors and ⌘ : G ) G0 a natural transformation. Given B 2 B, we define the natural
transformation ⌘F : GF ) G0F where for each B 2 Ob(B),

(⌘F )B = ⌘F (B).

Given C 2 C we also define the natural transformation F 0⌘ : F 0G ) F 0G0 where for each
C 2 Ob(C ),

(F 0⌘)C = F 0
(⌘C).

Lemma 4.10. ⌘F and F 0⌘ as defined above in Definition 4.9 are natural transformations.

Proof. We need to show that the naturality condition holds. First for ⌘F . Given B,B0 2 B
and f 2 hom(B,B0

) we have,

(⌘F )B0 �GF (f) = ⌘F (B0) �GF (f)

= ⌘F (B0) �G(F (f))

= G0
(F (f)) � ⌘F (B), by the naturality of ⌘

= G0F (f) � ⌘F (B).

Now we prove F 0⌘ is natural. Given C,C 0 2 C and g 2 hom(C,C 0
) we have,

(F 0⌘)C0 � F 0G(g) = F 0
(⌘C0) � F 0G(g)

= F 0
(⌘C0 �G(g))

= F 0
(G0

(g) � ⌘C), by the naturality of ⌘
= F 0G0

(g) � F 0
(⌘C)

= F 0G0
(g) � (F 0⌘)C .

Now we can define horizontal composition of natural transformations, the diagram below
illustrates this,

C D E

F

F
0

G

G
0

µ ⌘ .

Definition 4.11. Let C ,D ,E be categories, F,F0
: C ! D ,G,G0

: D ! E functors and
µ : F ) F 0, ⌘ : G ) G0 natural transformation. We then define,

⌘ ⇤ µ : GF ) G0F 0
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where for each X 2 C ,

(⌘ ⇤ µ)X = G0
(µX) � ⌘F (X)

= ⌘F 0(X) �G(µX).

The last equality is true by the naturality condition of ⌘ on the morphism µX in B. This
definition is equivalent to the composition of the following commutative diagram.

GF (X) G0F (X)

GF 0
(X) G0F 0

(X)

⌘F (X)

G(µX) (⌘⇤µ)X G
0(µX)

⌘F 0(X)

Lemma 4.12. ⌘ ⇤ µ as defined above is a natural transformation.

Proof. Again we need to show the naturality condition holds for ⌘ ⇤ µ. Given X,Y 2 Ob(C )

and f 2 hom(X,Y ) we have,

(⌘ ⇤ µ)Y �GF (f) = ⌘F 0(Y ) �G0
(µY ) �GF (f)

= ⌘F 0(Y ) �GF 0
(f) �G0

(µX)

= G0F 0
(f) � ⌘F 0(X) �G0

(µX)

= G0F 0
(f) � (⌘ ⇤ µ)X .

The third equality is true by the naturality of ⌘ and the second is true by the naturality of µ
and that functors preserve commutativity (This is not proved here but can be found in Riehl
[9]). This proof is equivalent to saying the diagram,

GF (X) GF 0
(X) G0F 0

(X)

GF (Y ) GF 0
(Y ) G0F 0

(Y )

G
0(µX)

GF (f)

⌘F 0(X)

GF
0(f) G

0
F

0(f)

G
0(µY ) ⌘F 0(Y )

commutes.

4.2.3 Composition interchange

This section is adapted from Leinster [5] (Page 38). If we have the categories, functors and
natural transformations as in the diagram below we can compose vertically and then hori-
zontally or horizontally then vertically. We find this to be equivalent.

C D E

F

F
0

F
0

F
00

G

G
0

G
0

G
00

µ

⌘

↵

�

Theorem 4.13 (Composition interchange). Let C ,D ,E be categories, F,F0,F00
: C ! D and

G,G0,G00
: D ! E functors and

µ : F ) F 0, ⌘ : F 0 ) F 00,↵ : G ) G0,� : G0 ) G00

natural transformations. Then,

(� · ↵) ⇤ (⌘ · µ) = (� ⇤ ⌘) · (↵ ⇤ µ). (4.2)
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Proof. For each X 2 Ob(C ) we have,

((� · ↵) ⇤ (⌘ · µ))X = G00
((⌘ · µ)X) � (� · ↵)F (X)

= G00
(⌘X � µX) � �F (X) � ↵F (X)

= G00
(⌘X) �G00

(µX) � �F (X) � ↵F (X)

= G00
(⌘X) � (�F 0(X) �G0

(µX)) � ↵F (X)

= (G00
(⌘X) � �F 0(X)) � (G0

(µX) � ↵F (X))

= (� ⇤ ⌘)X � (↵ ⇤ µ)X
= ((� ⇤ ⌘) · (↵ ⇤ µ))X .

Where the fourth equality is from the naturality of �.

Remark 4.14. Equation (4.2) defines a natural transformation from GF to G00F 00.

4.3 Functor categories

We can consider functors as objects and natural transformations as morphisms between
them. Since we have a notion of composing natural transformations we just need to show
there exists an identity transformation for each functor and that composition is associative
and we will have a category.

Definition 4.15. Let C and D be categories and F: C ! D be a functor. Then define,

idF : F ) F,

idFX 7! idF (X).

Lemma 4.16. idF as defined above is a natural transformation.

Proof. We need to show the naturality condition holds. Given X,Y 2 Ob(C ) and f 2
hom(X,Y ) we have,

idFY � F (f) = idF (Y ) � F (f)

= F (f)

= F (f) � idF (X)

= F (f) � idFX .

Definition 4.17. Let C ,D be categories, F,G: C ! D be functors. We call a natural transfor-
mation ⌘ : F ) G a natural isomorphism if there exists a natural transformation ⌘�1

: G ) F
such that,

⌘ · ⌘�1
= idG

and,
⌘�1 · ⌘ = idF .

Lemma 4.18. Let C and D be categories then for each functor F: C ! D The natural trans-
formation idF acts as an identity with respect to vertical composition.
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Proof. Given any functors from C to D , G: C ! D and G
0
: C ! D and any two natural

transformations ⌘ : F ) G and µ : G0 ) F . Then for each X 2 Ob(C ),

(idF · µ)X = idFX � µX

= idF (X) � µX

= µX

and,

(⌘ · idF )X = ⌘X � idFX

= ⌘X � idF (X)

= ⌘X .

Lemma 4.19. Vertical composition as defined in Definition 4.6 is associative.

Proof. Let F: C ! D, F0
: C ! D, G0

: C ! D and G: C ! D be functors. Let ⌘ : F ) F 0,
µ : F 0 ) G and � : G ) G0 be natural transformations. Then for each X 2 Ob(C),

(µ · (⌘ · �))X = µX � (⌘X � �X)

= (µX � ⌘X) � �X
= ((µ · ⌘) · �)X

where � is associative since C is a category.

Using Definition 2.1 we cannot state that for all categories C and D there exists a functor
category with functors as the objects and natural transformations as the morphisms since it
is possible to have class of natural transformations between two functors rather than a set we
need to put a restriction on the size of the categories to guarantee the natural transformations
between any two functors form a set. A similar theorem and proof of Theorem 4.23 is given
in Riehl [9] (page 44 corollary 1.7.2) where here we specify small categories since Riehl uses
a slightly different definition of a category.

Definition 4.20. A category C is called small if the collection of all morphisms in C form a
set.

Remark 4.21. Definition 4.20 implies that the collection of all objects also forms a set since
the objects are in a bijective correspondence with the set off all identity morphisms and these
form a subset of the set of all morphisms in a category.

Definition 4.22. Let C and D be small categories. We define DC
= (Ob(DC

), hom, �, id) as:

1. Ob(DC
) is the collection of all functors between C and D ;

2. For each F,G 2 Ob(DC
), homDC (F,G) is the collection of natural transformations

between F and G;

3. � is vertical composition of natural transformations as in Definition 4.6;

4. For each F 2 Ob(DC
) we have the identity idF defined in Definition 4.15.

Theorem 4.23. DC defined above in Definition 4.22 is a small category.
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Proof. First note that the collection of all functors between C and D is indeed a set since the
collection of all functions between two sets forms a set. Similarly, the collection of all natural
transformations between two functors is a set. Composition is defined in Definition 4.6
which is associative by Lemma 4.19. Identities exist and are defined by Definition 4.15.

The following example was stated on Wiki [12] where here we go in to more detail.

Example 4.24. Recall the category of sets, Set as defined in Example 2.4 and consider a
monoid M defined as a one object category as in Subsection 2.1.2. The functor category
SetM is the category whose objects are the left action functors, LX , as defined in Example
3.23 and morphisms are the natural transformations defined in Example 4.5. This category
represents the category of sets acted on by left action of the monoid M . The category SetM

is isomorphic to a wide subcategory of the category Set. Let the functor � : SetM ! Set be
defined on objects,

LX 7! X

and for a morphism ↵ 2 homSetM (LX , LY ),

↵ 7! ↵m

as in defined in Example 4.5. Then � is an isomorphism from SetM to the subcategory
of Set which has for morphisms only the functions of the form ↵M .
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5 Universal morphisms and adjoint functors

In this section we see how the free and forgetful functors defined in Definition 3.4 and Def-
inition 3.6 are related by looking at universal morphism and adjoint functors. Definitions
and notation from this section are from Clementino [3] and Adámek - Herrlick - Strecker [1].

Definition 5.1 (Universal morphism). Let C and D be categories and G: C ! D be a func-
tors and X 2 Ob(D).
A universal morphism from X to G is a pair (⌘X , CX) where ⌘X 2 hom(X,G(CX)) is a mor-
phism and CX 2 Ob(C ) such that for each C 2 Ob(C ) and each morphism f 2 hom(X,G(C))

there exists a unique morphism f̂ 2 hom(CX , C) for which the diagram on the left

X G(CX) CX

G(C) C

⌘X

f
G(f̂) f̂

(5.1)

commutes.
A universal morphism from G to X is a pair ("X , CX) where "X 2 hom(G(CX), X) is a mor-
phism and CX 2 Ob(C ) such that for each C 2 Ob(C ) and each morphism g 2 hom(G(C), X)

there exists a unique morphism ĝ 2 hom(C,CX) for which the diagram on the left

X G(CX) CX

G(C) C

"X

g G(ĝ) ĝ

commutes.

Definition 5.2 (Adjoint). Let C and D be categories and G: C ! D a functor. We say G
is right adjoint if for each object X 2 Ob(D) there exists a universal morphism, (⌘X , CX)

from X to G. We say G is left adjoint if for each object X 2 Ob(D) there exists a universal
morphism, (✏X , CX) from G to X . We say G is adjoint if G is either right adjoint or left
adjoint.

5.1 Example: Free/forgetful adjunction for monoids

Lemma 5.3. Let F: Set ! Mon be the free monoid functor defined in Definition 3.9 and
U: Mon ! Set be the forgetful monoid functor as defined in Definition 3.4. Then F is left
adjoint.

Proof. For each X 2 Ob(Set) let

⌘ : idSet ! UF,

⌘X : X ! U((�(X), ⇤,?)),

x 7! (x).

Then given (A, �, eA) 2 Mon and f 2 homSet(X,U((A, �, eA))) let

f̂ : (�(X), ⇤,?) ! (A, �, eA),
f̂((x1, x2, . . . , xn)) 7! f(x1) � f(x2) � · · · � f(xn),

f̂(?) 7! eA.

35



MATH 5004M Basic Category Theory 2022/23

We first show f̂ is a monoid homomorphism. We ,have that

f̂(?) = eA

and,

f̂((x1, x2, . . . , xn, y1, y2, . . . , yn)) = f(x1) � f(x2) � · · · � f(xn) � f(y1) � f(y2) � · · · � f(yn))
= f̂((x1, x2, . . . , xn)) � f̂((y1, y2, . . . , yn)).

Hence f̂ is a monoid homomorphism. The diagram,

X U((�(X), ⇤,?)) (�(X), ⇤,?)

U((A, �, eA)) (A, �, eA)

⌘X

f
U(f̂) f̂

Commutes. So we need to show f̂ is unique. Assume there exists monoid homomorphism
ĝ such that the diagram commutes. Then for each x 2 X ,

f(x) = ĝ(⌘x(x))

= ĝ((x))

Since ĝ is a monoid homomorphism,

ĝ((x1, x2, . . . , xn)) = ĝ((x1)) � ĝ((x2)) · · · � ĝ((xn))
= f(x1) � f(x2) � · · · � f(xn)
= f̂ .

Therefore, since there is a unique f̂ such that the diagram commutes for all X 2 Set. F is
left adjoint.

Remark 5.4. We will see later that Lemma 5.3 implies U is right adjoint.

5.1.1 Equivalent definitions of adjoint functors

The following Lemma 5.5 followed from discussion with the supervisor and from the Wikipedia
article on adjoint functors [10]. Here we add the proof.

Lemma 5.5. Let C and D be categories, G: C ! D be a functor and for each X 2 Ob(D)

we have (⌘X , CX) is a universal morphism from X to G. Then given C 2 C there exists a
bijective function, defined as

�X,C : homD(X,G(C)) ! homC (CX , C),

f 7! f̂ ,

where f̂ is defined from the universal property in Diagram (5.1). Further given C 0 2 Ob(C )

and g 2 hom(C,C 0
) the following diagram commutes,

homD(X,G(C)) homC (CX , C)

homD(X,G(C 0
)) homC (CX , C 0

)

�X,C

hX(G(g)) hCX
(g)

�X,C0

(5.2)
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where hCX is the functor defined in Lemma 3.12. In particular the �X,C , where C 2 Ob(C ),
combine to give a natural isomorphism �X : hX �G ) hCX .

Proof. First we show that for C 2 Ob(C ), �X,C is a bijection by showing it is surjective and
injective. Given f, f 0 2 homD(X,G(C)) suppose f̂ = f̂ 0, then we have,

f = G(f̂) � ⌘X
= G(f̂ 0) � ⌘X
= f 0.

Hence �X,C is injective. Given g 2 homC (CX , C) we have G(g) 2 homD(G(CX), G(C)) since
G is a functor. We can then construct f = G(g) � ⌘X since ⌘X 2 homD(X,G(CX)) and D is a
category, hence g = f̂ . Therefore �X,C is surjective and hence a bijection. We will now show
the diagram (5.2) commutes. Given f 2 homD(X,G(C)) we need to show

g � �X,C(f) = �X,C0(G(g) � f).

We have,

g � �X,C(f) = g � f̂
= �X,C0(��1

X,C0(g � f̂))

= �X,C0(G(g � f̂) � ⌘X)

= �X,C0(G(g) �G(f̂) � ⌘X)

= �X,C0(G(g) � f).

The following theorem is adapted from Adámek - Herrlick - Strecker [1] (page 306 The-
orem 19.1) where here we add the complete proof which was left as an exercise.

Theorem 5.6. Let G: C ! D be a right adjoint functor and suppose that for each object
X 2 Ob(C ) we are given a universal morphism (⌘X , CX), from X to G.

1. There exists a unique functor F: D ! C such that the following two conditions hold:

(a) F (X) = CX ;
(b) We have a natural transformation,

⌘ : idD ) GF

whose components are given by:

⌘X : X ! G(CX);

2. Further, we have a natural transformation " : FG ) idC where for each C 2 C , "C is
the unique morphism for which,

G(C) G(CX)

G(C)

⌘G(C)

idG(C)

G("C) (5.3)

commutes;
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3. We also have that the following identities are satisfied:

(a) ⌘G �G" = idG;
(b) F⌘ � "F = idF .

Proof. Let F: D ! C be defined:

F : Ob(D) ! Ob(C ),

X 7! CX

and,

F : homD(X,Y ) ! homC (F (X), F (Y )), f 7! \⌘Y � f.

This definition comes from the diagram,

X G(CX)

Y G(CY )

⌘X

f ⌘Y �f
G(\⌘Y �f)

⌘Y

which commutes since ⌘X is a universal morphism. If this is a functor then it is unique since
it is unique on objects and for f 2 homD(X,Y ) we have ⌘Y � f 2 homD(X,G(CY )) and
by Lemma 5.5 there is a bijection between homD(X,G(CY )) and homC (CX , CY ) hence F is
unique on morphisms.

We show F is a functor. Given X 2 Ob(D),

F (idX) = \⌘X � idX
= ⌘̂X

= idCX

= idF (X).

Equivalently the diagram,

X G(CX)

X G(CX)

⌘X

idX G( \⌘X�idX)

⌘X

commutes since ⌘X is a universal morphism. We also have for f 2 homD(X,Y ) and g 2
homD(Y, Z), the diagram,

X G(CX)

Y G(CY )

Z G(CZ)

⌘X

f G( \⌘Y �f)

⌘Y

g G(\⌘Z�g)

⌘Z

commutes since ⌘X and ⌘Y are universal morphisms and we also have,
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X G(CX)

Z G(CZ)

⌘X

g�f G( \⌘Z�(g�f))

⌘Z

commutes since ⌘X is a universal morphism, in particular,

G( \⌘Z � (g � f) = G(\⌘Z � g) �G(\⌘Y � f),

therefore, since G is a functor,

F (g � f) = \⌘Z � g � f

= \⌘Z � g � \⌘Y � f
= F (g) � F (f).

Hence F is a functor.
Define ⌘ : idD ) FG for each X 2 Ob(D), ⌘X is the universal morphism given. Then

clearly ⌘X 2 homD(X,GF (X)) since F (X) = CX .
We show the naturality condition holds. Given X,Y 2 Ob(D) and f 2 homD(X,Y ),

idD(X) GF (X)

idD(Y ) GF (Y )

⌘X

idD(f) GF (f)

⌘Y

=
X G(CX)

Y G(CY )

⌘X

f G(\⌘Y �f)

⌘Y

commutes since ⌘X is a universal morphism. Hence the naturality condition holds and ⌘ is
a natural transformation. " : FG ) idC exists since ⌘G(C) is a universal morphism we show
the naturality condition holds. Given C,C 0 2 Ob(C) and f 2 homC (C,C 0

) we have,

G(f � "C) � ⌘G(C) = G(f) �G("C) � ⌘G(C)

= G(f) � idG(C)

= G(f)

= G("C0) � ⌘G(C0)G(f)

= G("C0) �GFG(f) � ⌘G(C), by the naturality of ⌘,

= G("C0 � FG(f)) � ⌘G(C).

Therefore,
f � "C = "C0 � FG(f).

The identity (a) is satisfied by the definition of " Diagram (5.3). To show identity (b) first
note since ⌘ is a natural transformation from idD to GF we have for each D 2 Ob(D),

(⌘GF � ⌘)D = ⌘G(F (D)) � ⌘D
= G(F (⌘D)) � ⌘D
= (GF⌘ � ⌘)D.

Therefore by using identity (a) we have:

G(idF ) � ⌘ = idGF � ⌘
= G"F � ⌘GF � ⌘
= G"F �GF⌘ � ⌘
= G("F � F⌘) � ⌘.
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Hence,
idF = "F � F⌘.

5.2 Adjoint situations

Definition 5.7 if adapted from Adámek - Herrlick - Strecker [1] page 307.

Definition 5.7. An adjoint situation (F,G, ⌘, ") is a pair of functors F: D ! C and G: C ! D
and a pair of natural transformations ⌘ : idD ) GF and " : FG ) idC . Satisfying the triangle

identities:

1. "F � F⌘ = idF ;

2. G" � ⌘G = idG.

We call ⌘ the unit and " the co-unit.

Remark 5.8. Given a right adjoint functor G: C ! D , Theorem 5.6 tells us that there exists
at least one adjoint situation (F,G, ⌘, ").

The following Corollary 5.9 followed from discussions with the supervisor and here we
provide a proof.

Corollary 5.9. Let C and D be categories, G: C ! D be a functor. The following are equiv-
alent:

1. For each D 2 Ob(D), (⌘D, F (D))is a universal morphism from D to G;

2. (F,G, ⌘, ") is an adjoint situation;

3. The family of functions:

�D,C : homC (F (D), C) ! homD(D,G(C)),

are bijections. That is for all D 2 Ob(D), there exists a natural isomorphism �D : hD �
G ) hG(C).

Proof. (1) =) (2) by Theorem 5.6 and (1) =) (3) by Lemma 5.5. Suppose that for each
object D 2 Ob(D) we have a natural isomorphism �D : hD � G ) hG(C). Then for each
object D 2 Ob(D) and each C 2 Ob(C ), f 2 homD(D,G(C)) there is a unique morphism
�D(f) 2 homC (F (D), C), therefore (⌘D, F (D)) where ⌘D is the unique morphism for which
the diagram,

D G(F (D)) F (D)

G(C) C

⌘D

f
G(�D(f)) �D(f)

commutes. Therefore (3) =) (1). Suppose we have an adjoint situation (F,G, ⌘, ") then for
C 2 Ob(C ), D 2 Ob(D) and f 2 homD(D,G(C)) the diagram on the left,

D G(F (D))

G(C) G(F (G(C))) F (D)

G(C) C

f

⌘D

G(F (f))

⌘G(C)

idG(C)

G("C) "C�F (f)
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commutes. Therefore for a morphism f there exists a morphism f̂ = "C �F (f) for which the
diagram commutes. To show uniqueness if f̂ 2 homC (F (D), C) where f = G(f̂) � ⌘D we
have the diagram,

F (D)

F (G(F (D))) F (G(C))

F (D) C

F (f)

idD

F (⌘D)

F (G(f̂))

"F (D) "C

f̂

commutes, and therefore f̂ = "C � F (f) is the unique morphism for which f = G(f̂) � ⌘D,
hence (⌘D, F (D)) is a universal morphism from D to G for all D 2 Ob(D). Therefore (2)
=) (1).

The following Lemma 5.10 is adapted from Adámek - Herrlick - Strecker [1] (Page 308
Proposition 19.7)

Lemma 5.10. Given an adjoint situation (F,G, ⌘, ") we have:

1. G is a right adjoint functor.

2. For each D 2 Ob(D), (⌘D, F (D)) is a universal morphism from D to G.

3. F is a left adjoint functor.

4. For each C 2 Ob(C ), ("C , G(C)) is a universal morphism from F to C

Proof. By Corollary 5.9 if we have an adjoint situation, (F,G, ⌘, ") then (⌘D, F (D)) are uni-
versal morphisms hence G is right adjoint. The proof for (4) and thus (3) follows similarly
to the proof of 5.9. Suppose we have the adjoint situation (F,G, ⌘, "), then for D 2 Ob(D),
C 2 Ob(C ) and f 2 homC (F (D), C) the diagram on the left,

C G(F (D))

F (D) F (G(F (D))) G(C)

F (D) D

f

"C

F (G(f))

"F (D)

idF (D)

F (⌘D) G(f)�⌘D

,

commutes. Therefore for a morphism f there exists a morphism f̂ = G(f) � ⌘D for which
the diagram commutes. To show uniqueness suppose we have f̂ 2 homD(G(C), D) where
f = "C � F (f̂), then we have the diagram,

G(C)

G(F (G(C))) F (G(C))

G(C) D

G(f)

idC

G("C)

G(F (f̂))

⌘G(C) ⌘D

f̂

,
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commutes, and therefore f̂ = G(f)�⌘D is the unique morphism for which f = "C �F (f̂),
hence ("C , G(C)) is a universal morphism from F to C for all C 2 Ob(D) and therefore F is
a left adjoint functor.

The following Lemma 5.11 is adapted from Adámek - Herrlick - Strecker [1] (Page 309
Proposition 19.9) however here we give the proof from the perspective of the left adjoint
functor F .

Lemma 5.11. Let F: D ! C be a left adjoint functor and (F,G, ⌘, ") be an adjoint situation.

1. If there is an adjoint situation (F,G0, ⌘0, "0) then there exists a natural isomorphism
⌧ : G ) G0 where "0 = F ⌧ � " and ⌘0 = ⌘ � ⌧�1F ;

2. If we have a functor G0 and a natural isomorphism ⌧ : G ) G0 then (F,G0, ⌘�⌧�1F, F ⌧�
") is an adjoint situation.

Proof. (1): By Lemma 5.10 we have for each C 2 Ob(C ), ("C , G(C)) and ("0
C
, G0

(C)) are
universal morphisms from F to G. Therefore there is an isomorphism ⌧C with "0

C
= F ⌧C �"C

by Definition 5.1 and hence ⌧ : G ) G0 is a natural isomorphism with "0 = F ⌧ � ". For each
D 2 Ob(D) we have:

"F (D) � F (⌘D) = idF (D)

= "0
F (D) � F (⌘0D)

= F ⌧F (D) � "F (D) � F (⌘0D)

= "F (D) � F (⌧F (D) � ⌘0D).

Therefore ⌘D = ⌧F (D) � ⌘0D, and hence ⌘0 = ⌘ � ⌧�1F .
(2): We have for each D 2 Ob(D),

(F (⌘ � ⌧�1F ) � (F ⌧ � ")F )(D) = F (⌘D) � F (⌧�1
F (D)) � F (⌧F (D)) � "F (D)

= F (⌘D) � F (⌧�1
F (D) � ⌧F (D)) � "F (D)

= F (⌘D) � "F (D)

= idF (D)

and for C 2 Ob(C ) we have,

(⌘ � ⌧�1F )G0 �G0
(F ⌧ � ")(C) = ⌘G0(C) � ⌧�1

F (G0(C)) �G
0
(F (⌧C) � "C)

= ⌘G0(C) � ⌧�1
F (G0(C)) �G

0
(F (⌧C)) �G0

("C)

= ⌘G0(C) �G0
("C)

= idG0(C).

Therefore (F,G0, ⌘ � ⌧�1F, F ⌧ � ") is an adjoint situation by Definition 5.7.

5.2.1 Category of adjoint situations

This section uses ideas from MacLane [6], specifically chapter IV. To define a category of
adjoint situations we need to define morphisms between adjoint situations. The following
Definition 5.12 is adapted from MacLane [6] (Page 99).
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Definition 5.12. Let (F: D ! C ,G: C ! D , ⌘, ") and (F
0
: D 0 ! C 0,G0

: C 0 ! D 0, ⌘0, "0) be
adjoint situations. A morphism between adjoint situations from (F,G, ⌘, ") to (F 0, G0, ⌘0, "0) is a
pair of functors (K: D ! D 0,L: C ! C 0

) such that:

1. For each object C 2 Ob(C ),

(K � F �G)(C) = (F 0 �G0 �K)(C) = (F 0 � L �G)(C)

and each morphism f 2 homC (C,C 0
)

(K � F �G)(f) = (F 0 �G0 �K)(f) = (F 0 � L �G)(f).

That is the diagram,

C D C

C 0 D 0 C 0

G

K

F

L K

G
0

F
0

(5.4)

commutes;

2. For each object C 2 Ob(C ) we have,

"0
K(C) = K("C),

and for each object D 2 Ob(D) we have,

L(⌘D) = ⌘0
L(D).

Lemma 5.13. Let (F: D ! C ,G: C ! D , ⌘, "), (F0
: D 0 ! C 0,G0

: C 0 ! D 0, ⌘0, "0) and
(F

00
: D 00 ! C 00,G00

: C 00 ! D 00, ⌘00, "00) be adjoint situations and let (K: D ! D 0,L: C ! C 0
)

and (K
0
: D 0 ! D 00,L0

: C 0 ! C 00
) be morphisms of adjoint situations. Then (K 0 �K,L0 � L)

is a morphism of adjoint situations.

Proof. First note K
0 �K: D ! D 0 and L

0 � L: C ! C 0 are functors since they are the compo-
sition of functors. We have the diagram,

C D C

C 0 D 0 C 0

C 00 D 00 C 00

G

K

F

L K

G
0

K
0

F
0

L
0

K
0

G
00

F
00

commutes since all parts of the diagram commute. Then for each C 2 Ob(C ) we have the
following,

"00
K0(K(C)) = K 0

("0
K(C))

= K 0
(K("C))

and for each D 2 Ob(D) we have,

L0
(L(⌘D)) = L0

(⌘L(D))

= ⌘L0(L(D)).

Therefore (K 0 �K,L0 � L) is a morphism of adjoint situations.
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Definition 5.14. We define the composition of two morphisms of adjoint situations, (L,K)

and (L0, L0
) as

(L0,K 0
) � (L,K) = (K 0 �K,L0 � L)

Example 5.15. Let (F: D ! C ,G: C ! D , ⌘, ") be an adjoint situation. Then (idC , idD)

a morphism of adjoint situations from (F,G, ⌘, ") to (F,G, ⌘, "). In fact we have that this
morphism acts as an identity with respect to morphisms of adjoint situations and the com-
position defined above in Definition 5.14.

Proof. We need to show Diagram 5.4 commutes, so we have,

idC � F �G = F �G
= F �G � idC

= F �G
= F � idD �G.

We also have for each C 2 Ob(C ),

"idC(C) = "C

= idC ("C)

and each D 2 Ob(D),

idD(⌘D) = ⌘D

= ⌘idC (D).

(idC , idD) clearly acts as an identity since for any morphism (L,K) from any adjoint situa-
tion to (F,G, ⌘, ") and (L0,K 0

) from (F,G, ⌘, ") to any adjoint situation,

(L,K) � (idC , idD) = (L � idC ,K � idD)

= (L,K)

and,

(idC , idD) � (K 0, L0
) = (idC �K 0, idD � L0

)

= (L0,K 0
).

5.3 Composition of adjoint functors

The next Definition 5.16 is adapted from [1] (Page 309, Definition 19.10).

Definition 5.16. Let G: C ! D and F: D ! C be functors. F is left adjoint to G and G is
right adjoint to F , written F a G if there exists an adjoint situation (F,G, ⌘, ").

The following Lemma 5.17 is adapted from Leinster [5] (Page 49, Remark 2.1.11) here we
add a proof.

Lemma 5.17. Let C , D and E be categories, G: C ! D be right adjoint to F: D ! C
and G

0
: D ! E be right adjoint to F

0
: E ! D . Then G

0 �G: C ! E is right adjoint to
F � F0

: E ! D and given C 2 Ob(C ) and E 2 Ob(E ) we have,

homC (F (F 0
(E)), C) ⇠= homD(F

0
(E), G(C)) ⇠= homE (E,G0

(G(C))).
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Proof. We have for any E 2 Ob(E ), F 0
(E) 2 Ob(D) hence since there is an adjoint situation

F ,G
homC (F (F 0

(E)), C) ⇠= homD(F
0
(E), G(C)).

Similarly, for any C 2 Ob(C ), G(C) 2 Ob(D) hence since there is an adjoint situation G0, F 0

we have,
homD(F

0
(E), G(C)) ⇠= homE (E,G0

(G(C))).

Remark 5.18. Lemma 5.17 shows that if we compose two adjoint functors then we get an
adjoint functor.

5.4 Examples

The following Example 5.19 came from a discussion with the supervisor and can be found in
Leinster [5] (Page 47, Example 2.16). Example 5.19 can also be found in Adámek - Herrlick -
Strecker [1] (Page 307, Example 19.4 (3)).

Example 5.19. Let M 2 Ob(Set) be a set then we have a functor

(�)⇥M : Set ! Set

defined for each object X 2 Ob(Set) as,

X 7! X ⇥M,

the usual direct product of sets, and for each f 2 homSet(X,Y ),

f 7! f ⇥M

where,

f ⇥M : X ⇥M ! Y ⇥M,

(x,m) 7! (f(x),m).

Recall we also have the functor hM defined in Lemma 3.12.
We can define the natural transformation ⌘ : idSet ) hM ((�)⇥M) where for each X 2

Ob(Set),

⌘X : X ! hM (X ⇥M),

x 7! ⌘(x)
X

where,

⌘(x)
X

: M ! X ⇥M,

m 7! (x,m).

Then we have a unique function defined

f̂ : X ⇥M ! Z,

(x,m) 7! fx(m)

where,

fx : M ! Z,

m 7! (f(x))(m)

for which the diagram on the left,
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X hM (X ⇥M) X ⇥M

hM (Z) Z

⌘X

f
hM (f̂) f̂

commutes.
The co-unit " : (hM (�)) ⇥ M ) idSet is defined for each S 2 Ob(Set) as the unique

morphism which,

hM (S) hM (X ⇥M)

hM (S)

⌘hM (S)

idhM (S)

hM ("S)

commutes. Therefore define,

"S : (hM (S))⇥M ! S,

(gt,m) 7! gt(m)

then for each g 2 homSet(S, T ⇥M) there is a unique function given,

ĝ : T ! hM (S)

t 7! gt

where,

gt : M ! S,

gt(m) 7! g(t,m)

for which the diagram on the left,

S (hM (S))⇥M hM (S)

T ⇥M T

"S

g ĝ⇥M ĝ

commutes.
Now we can classify all other adjoint situations by looking at bijections; Let M 0 be a set

such that there exists a bijection ⌧ : M ! M 0. ⌧ can be realised as a natural transformation

⌧ : (�)⇥M ) (�)⇥M 0

where for each X 2 Ob(Set) we have,

⌧X : X ⇥M ! X ⇥M 0,

(x,m) 7! (x, ⌧(m)).

We show the naturality condition holds. Let X,Y 2 Ob(Set) and f 2 homSet(X,Y ) then for
(x,m) 2 X ⇥M ,

(⌧Y � f ⇥M)((x,m)) = (⌧Y ((f(x),m)))

= (f(x), ⌧(m))

= f ⇥M((x, ⌧(m)))

= f ⇥M � ⌧X((x,m))
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Therefore the naturality condition holds. ⌧ has a natural inverse

⌧�1
: (�)⇥M 0 ) (�)⇥M

where for each X 2 Ob(Set) we have,

⌧�1
X

: X ⇥M ! X ⇥M 0,

(x,m0
) 7! (x, ⌧�1

(m0
)).

since ⌧ is a bijection. Hence ⌧ is a natural isomorphism.
So for the functor hM we have adjoint situations (⌧((�)⇥M), hM , hM⌧ � ⌘, " � ⌧�1hM ).
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6 Initial and terminal objects

In this section we use notation and definitions from Leinster [5].

Definition 6.1. Let C be a category. We call an C �Objects, I 2 Ob(C ) initial if for any object
C 2 Ob(C ), there is exactly one morphism f 2 homC (I, C). We call an C � Objects, T 2
Ob(C ) terminal if for any object C 2 Ob(C ), there is exactly one morphism f 2 homC (C, T ).

The following Lemma 6.2 and proof is adapted from Leinster [5] (page 49 Lemma 2.1.8)

Lemma 6.2. Let C be a category and I, I 0 2 Ob(C ) initial objects in C . There exists a unique
isomorphism f 2 homC (I, I 0). Let T, T 0 2 Ob(C ) be terminal objects in C then there exists a
unique isomorphism g 2 homC (T, T 0

).

Proof. Since I is initial there exists a unique morphism f 2 homC (I, I 0).
It remains to show f is an isomorphism. Since I 0 is initial then there exists a unique

morphism f 0 2 homC (I 0, I). Therefore f 0 � f 2 homC (I, I) but since I is initial f 0 � f is the
unique morphism in homC (I, I). Since C is a category we have idI 2 homC (I, I), hence idI
is the unique morphism in homC (I, I) therefore,

f � f 0
= idI

similarly,
f 0 � f = idI0

since f � f 0 2 homC (I 0, I 0) is unique. Therefore f is an isomorphism.
Since T is terminal there exists a unique morphism g 2 homC (T 0, T ), also since T 0 is

terminal there exists a unique morphism g0 homC (T, T 0
). Then we have,

g � g0 = idT 0

since g � g0 2 homC (T 0, T 0
) is unique. Similarly,

g0 � g = idT

since g0 � g homC (T, T ) is unique.

Remark 6.3. Given a category there may or may not exist an initial or terminal objects but
the above Lemma 6.2 states that if there are initial objects they are all isomorphic and if there
are terminal objects they are all isomorphic.

6.1 Examples

The following example can be found on nCatLab[8].

Example 6.4. Let Set be the category of sets. The empty set ? 2 Ob(Set) is initial. Any
singleton set {x} 2 Ob(Set) is terminal. For any set Y 2 Ob(Set) we have the unique map

f : Y ! {x},
y 7! x.

hence {x} is terminal. There also exists a unique function ; : ? ! Y which is the empty
function, hence ? is initial.
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Example 6.5. Let Grp be the category of groups. The trivial group {id} is initial and termi-
nal. Given any group (G, �) There exists a group homomorphism,

f : {id} ! (G, �),
id 7! idG,

and also a group homomorphism,

f : (G, �) ! {id},
x 7! id.

Both of these functions are unique since group homomorphisms must preserve identities.

6.2 Initial and terminal objects as adjoint functors

Definition 6.6. We call the category 1 with one object 1 2 Ob(1) and one morphism id1 2
hom1(1, 1) the identity category.

The following Lemma 6.9 is adapted from Leinster [5] (Page 49 Example 2.1.9)

Lemma 6.7. Let C be a category. Given C 2 Ob(C ), there exists a functor IC : C ! 1 which
maps

1 7! C

and,
id1 7! idC .

Further, there exists a functor T: 1 ! C where for C 2 Ob(C ),

C 7! 1

and for f 2 homC (A,B),
f 7! id1.

Proof. IC is a functor since,

IC(id1) = idC

= idIC(1)

and,

IC(id1 � id1) = IC(id1)

= idC

= idC � idC
= IC(id1) � IC(id1).

T is a functor since for all C 2 Ob(C ),

T (idC) = id1 = idT (1)

and for any f 2 homC (A,B) and g 2 homC (B,C),

T (g � f) = id1

= id1 � id1
= T (g) � T (f).

49



MATH 5004M Basic Category Theory 2022/23

Lemma 6.8. Given a category C let I be the set of all functors of the form IC as in Lemma
6.7, there exists a bijection

 : Ob(C ) ! I,

C 7! IC .

Proof. Given IC 2 I there exists C 2 Ob(C ) such that C 7! IC by Lemma 6.7, hence  is
surjective.

Given IC = IC0 then C = C 0 by Lemma 6.7 hence  is injective.
Therefore  is a bijection.

Lemma 6.9. Let C be a category and C 2 C then:

1. IC : 1 ! C is left adjoint if and only if C is an initial object of C ;

2. IC : 1 ! C is right adjoint if and only if C is a terminal object of C .

Proof. (1): Let IC be a left adjoint. Then there exists an adjoint situation defined in Theorem
5.6. Hence there is a unique functor T⇤

: C ! 1 but since the only functor from C to 1 is the
one defined in Lemma 6.7 we have T ⇤

= T . Therefore, for each C 0 2 Ob(C ),

homC (IC(1), C
0
) ⇠= hom1(1, T (C

0
))

=) homC (C,C
0
) ⇠= hom1(1, 1)

=) homC (C,C
0
) ⇠= {id1}.

Therefore C is an initial object.
Let C 2 Ob(C ) be an initial object, therefore we have for any C 0 2 Ob(C )

homC (C,C
0
).

has one element. Then we have,

hom(C,C 0
) ⇠= {id1}

=) hom(C,C 0
) ⇠= hom1(1, 1)

=) homC (IC(1), C
0
) ⇠= hom1(1, T (C

0
)).

Therefore by 5.6 IC is a left adjoint.
(2): Let IC be a right adjoint. Then there exists an adjoint situation defined in Theorem

5.6. Hence there is a unique functor T⇤
: C ! 1 but since the only functor from C to 1 is the

one defined in Lemma 6.7 we have T ⇤
= T . Therefore, for each C 0 2 Ob(C ),

hom1(T (C
0
), 1) ⇠= homC (C

0, IC(1)),

=) hom1(1, 1) ⇠= homC (C
0, C),

=) {id1} ⇠= homC (C
0, C).

Therefore C is a terminal object. Let C 2 Ob(C ) be a terminal object, therefore we have for
any C 0 2 Ob(C )

homC (C
0, C).

has one element. Then we have,

{id1} ⇠= homC (C
0, C)

=) hom1(1, 1) ⇠= homC (C
0, C)

=) hom1(T (C
0
), 1) ⇠= homC (C

0, IC(1)).

Therefore by 5.6 IC is a right adjoint.
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Example 6.10. Let Set be the category of sets. We have the functor,

I? : 1 ! Set,

1 7! ?.

Then for X 2 Ob(Set), we have a universal morphism (⌘X , CX), where CX = 1 and ⌘X = ;,
the empty function:

⌘X : X 7! ?

X I?(1) = ? 1

I?(1) = ? 1

⌘X

; I?(id1)=id? id1 .

Therefore, I? is right adjoint.
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7 Monads

Monads on a category C are endofunctors of C with some extra structure. We can look
at monads to study adjunctions since for adjoint functors F and G we will show FG is a
monad. Conversely, we will find that given a monad there are suitable adjoint functors
which define the monad, these however are not unique.

Definition 7.1. Let C be a category. A monad on C is a triple (T, ⌘, µ) where T: C ! C is
endofunctor, ⌘ : idC ) T and µ : T 2 ) T are natural transformations for which the follow-
ing conditions hold:

µ � Tµ = µ � µT ;
µ � T⌘ = µ � ⌘T = idT

where idT is the identity natural transformation on F as defined in Definition 4.15. � is
vertical composition of natural transformations as in Definition 4.6. These conditions are
equivalent to saying the diagrams,

T 3 T 2 T T 2

T 2 T T 2 T

µT

Tµ

µ T⌘

⌘T

µ

µ µ

commute. That is, for each object, X 2 Ob(C ), the diagram,

T 3
(X) T 2

(X)

T 2
(X) T (X)

µT (X)

T (µX)

µX

µX

(7.1)

and,
T (X) T 2

(X)

T 2
(X) T (X)

T (⌘X)

⌘T (X)

µX

µX

(7.2)

commutes.

The following example is stated in [1] (Page 318, Examples 20.2 (3)), here we add the
proof.

Example 7.2. Let P: Set ! Set be the power set functor defined in Example 3.17. Let
⌘ : idSet ) P be defined as in Example 4.2 and µ : P 2 ) P be the natural transformation as
defined in Example 4.3. Then P = (P, ⌘, µ) is a monad.

Proof. We need to show that the diagrams

P 3 P 2 P P 2

P 2 P P 2 P

µP

Pµ

µ P⌘

⌘P

µ

µ µ
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commute. For each X 2 Ob(Set) and each element A 2 P 3
(X) we have,

(µ � Pµ)X(A) = µX � P (µX)(A)

= µX(µX [A])

= µX({µX(a)|a 2 A})

=

[

a2A
µX(a)

=

[

a2A

[

a02a
a0

=

[

a02
S

a2A a

a0

= µX(

[

a2A
a)

= µX(µP (X)(A))

= (µ � µP )X(A).

Also for each B 2 P (X),

(µ � P⌘)X(B) = µX � P (⌘X(B))

= µX(⌘X [B])

= µX({⌘X(b)|b 2 B})

=

[

b2B
⌘X(b)

=

[

b2B
{B}

= B

= idP (X)(B)

=

[

b02{B}

= µX({B})
= µX(⌘P (X)(B))

= (µ � ⌘P )X(B).

Therefore P is a monad.

The following example was briefly stated in the Wikipedia articles on monads [17], here
we will go into more detail.

Example 7.3. Let C be a category, the identity functor idC : C ! C as defined in Definition
3.15 forms a monad with ⌘ : idC ) idC defined for each X 2 Ob(C ),

⌘X = idX 2 homC (X,X)

and, µ : idC ) idC defined for each X 2 Ob(C ),

µX = idX 2 homC (X,X).
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Proof. We have for each X 2 Ob(C ),

(µ · Fµ)X = µX � F (µX)

= idX

= µX � µF (X)

= (µ · µF )X

and,

(µ · F⌘)X = µX � F (⌘X)

= idX

= µX � ⌘F (X)

= (µ · ⌘F )X .

Therefore we have a monad.

The following example 7.4 follows the example given in The Catsters video series on
monads [2].

Example 7.4. Let Set be the category of sets, defined in Example 2.4. Let F: Set ! Mon
be the free monoid functor defined in Definition 3.9 and U: Mon ! Set be the forget-
ful monoid functor as defined in Definition 3.4. We define the triple M = (T, ⌘, µ) where
T = UF: Set ! Set for each set X 2 Ob(Set),

⌘X : X ! �(X),

x 7! (x).

Where �(X) is the set of words of X , and

µX : �(�(X)) ! �(X)

be such that,
�
(x1, x2, . . . , xn), (y1, y2, . . . , ym), . . . . . . , (z1, z2, . . . , zr)

�

7!
�
x1, x2, . . . , xn, y1, y2, . . . , ym, . . . . . . , z1, z2, . . . , zr

�
.

(Note that �(�(X)) is the set of words of words of X). We claim that M is a monad.
T is a functor since it is a composition of two functors. We first show ⌘ and µ are natural

transformations.
First we prove the naturality of ⌘: Let f 2 homS (X,X 0

) then we have,

(⌘X0 � f)(x) = (f(x))

= T (f)((x))

= (T (f) � ⌘X)(x).

Therefore the naturality condition holds and ⌘ is a natural transformation.
Now let us prove the naturality of µ: Let f 2 homSet(X,X 0

) then we have,

(µX0 � T (T (f)))(
�
(x1, x2, . . . , xn)(y1, y2, . . . , ym), . . . . . . , (z1, z2, . . . , zr)

�
)

= µX0(
�
(f(x1), f(x2), . . . , f(xn))(f(y1), f(y2), . . . , f(ym)), . . . . . . , (f(z1), f(z2), . . . , f(zr))

�
)

=
�
f(x1), f(x2), . . . , f(xn), f(y1), f(y2), . . . , f(ym), . . . . . . , f(z1), f(z2), . . . , f(zr)

�

= T (f)(
�
x1, x2, . . . , xn, y1, y2, . . . , ym, . . . . . . , z1, z2, . . . , zr

�
)

= (T (f) � µX)(
�
(x1, x2, . . . , xn), (y1, y2, . . . , ym), . . . . . . , (z1, z2, . . . , zr)

�
).
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Therefore the naturality condition holds and µ is a natural transformation.
We now prove that the diagram (7.1) commutes. Let

0

BB@

((a, . . . , an), (b, . . . , bm), . . . , (c, . . . , cr)),
((a0, . . . , a0

n0), (b0, . . . , b0m0), . . . , (c0, . . . , c0r0)),
. . . ,

((a00, . . . , a00
n00), (b00, . . . , b00m00), . . . , (c00, . . . , c00r00))

1

CCA 2 �(�(�(X)))

be a general word of a word of a word of X . Here we have extended the notation in to
multi line, where each row is a word of a word of X .

We have,

(µ � Tµ)X(

0

BB@

((a, . . . , an), (b, . . . , bm), . . . , (c, . . . , cr)),
((a0, . . . , a0

n0), (b0, . . . , b0m0), . . . , (c0, . . . , c0r0)),
. . . ,

((a00, . . . , a00
n00), (b00, . . . , b00m00), . . . , (c00, . . . , c00r00))

1

CCA)

= (µX � T (µX))(

0

BB@

((a, . . . , an), (b, . . . , bm), . . . , (c, . . . , cr)),
((a0, . . . , a0

n0), (b0, . . . , b0m0), . . . , (c0, . . . , c0r0)),
. . . ,

((a00, . . . , a00
n00), (b00, . . . , b00m00), . . . , (c00, . . . , c00r00))

1

CCA)

= µX(

0

BB@

(a, . . . , an, b, . . . , bm, . . . , c, . . . , cr),
(a0, . . . , a0

n0 , b0, . . . , b0m0 , . . . , c0, . . . , c0r0),
. . . ,

(a00, . . . , a00
n00 , b00, . . . , b00m00 , . . . , c00, . . . , c00r00)

1

CCA)

=

0

BB@

a, . . . , an, b, . . . , bm, . . . , c, . . . , cr,
a0, . . . , a0

n0 , b0, . . . , b0m0 , . . . , c0, . . . , c0r0 ,
. . . ,

a00, . . . , a00
n00 , b00, . . . , b00m00 , . . . , c00, . . . , c00r00

1

CCA

= µX(

0

BB@

(a, . . . , an), (b, . . . , bm), . . . , (c, . . . , cr),
(a0, . . . , a0

n0), (b0, . . . , b0m0), . . . , (c0, . . . , c0r0),
. . . ,

(a00, . . . , a00
n00), (b00, . . . , b00m00), . . . , (c00, . . . , c00r00)

1

CCA)

= (µX � µT (X))(

0

BB@

((a, . . . , an), (b, . . . , bm), . . . , (c, . . . , cr)),
((a0, . . . , a0

n0), (b0, . . . , b0m0), . . . , (c0, . . . , c0r0)),
. . . ,

((a00, . . . , a00
n00), (b00, . . . , b00m00), . . . , (c00, . . . , c00r00))

1

CCA)

= (µ � µT )X(

0

BB@

((a, . . . , an), (b, . . . , bm), . . . , (c, . . . , cr)),
((a0, . . . , a0

n0), (b0, . . . , b0m0), . . . , (c0, . . . , c0r0)),
. . . ,

((a00, . . . , a00
n00), (b00, . . . , b00m00), . . . , (c00, . . . , c00r00))

1

CCA)

To show the diagram (7.2) commutes. Let (x1, x2, . . . , xn) 2 �(X) then we have,

(µ � T⌘)X((x1, x2, . . . , xn)) = µX(T (⌘X)((x1, x2, . . . , xn)))

= µX(((x1), (x2), . . . , (xn)))

= (x1, x2, . . . , xn)

= µX(((x1, x2, . . . , xn)))

= µX(⌘T (X)((x1, x2, . . . , xn)))

= (µ � ⌘T )X((x1, x2, . . . , xn)).
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Therefore, M is a monad.

7.1 Algebras of monads

The following definition is adapted from Adámek - Herrlick - Strecker [1] (Page 318, Defini-
tion 20.4) and the Casters video series on Monads [2]

Definition 7.5. Let C be a category and T = (T, ⌘, µ) be a monad on C . An algebra of T is
a pair, (X, ✓), where X 2 Ob(C ) and ✓ 2 homC (T (X), X), such that the following axioms
hold:

1. ✓ � ⌘X = idX ;

2. ✓ � T✓ = ✓ � µX .

That is the diagrams,
X T (X)

X
idX

⌘X

✓
(7.3)

and,
T 2

(X) T (X)

T (X) X

T✓

µX ✓

✓

(7.4)

commute.

Definition 7.6. Let C be a category, T = (T, ⌘, µ) be a monad on C and, (A, ✓) and (B,�)
algebras of T. A morphism of algebras of T is a morphism f 2 homC (A,B) such that

� � T (f) = f � ✓

that is the following diagram,

T (A) T (B)

A B

T (f)

✓ �

f

commutes.

Remark 7.7. The collection of morphisms of algebras, between the same pair of algebras, is
a set if we assume the definition of a category in Definition 2.1 since each hom set of C is a
set.

Lemma 7.8. Let T = (T, ⌘, µ) be a monad of a category C . Then for each X 2 Ob(C ),
(T (X), µX) is an algebra.

Proof. First note that ⌘X 2 homC (T (T (X)), T (X)) and therefore is a morphism ⌘X 2 homC (T (Y ), Y )

where Y = T (X) 2 Ob(C ) so we check the axioms in Definition 7.5.

µX � ⌘Y = µX � ⌘T (X)

= µX � (⌘T )X
= idT (X), By Definition 7.1

= idY
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and,

µX � T (µX) = µX � T (µX)

= µX � µT (X), By Definition 7.1

= µX � µY .

Therefore, (X,µX) is an algebra on T.

Definition 7.9. For a monad T = (T, ⌘, µ) we call (T (X), µX) the free T-algebra on X .

The following Lemma 7.10 is stated in Adámek - Herrlick - Strecker [1] (Page 318, Defi-
nition 20.4) but not proven.

Lemma 7.10. Let C be a category and T = (T, ⌘, µ) a monad over C . The collection
of all algebras, written Alg(T), forms a category with morphisms of algebras, called the
Eilenberg-Moore category. Composition is given by the composition of the category and for
each (A, ✓) 2 Ob(Alg(T)) the identity is the idA.

Proof. We first show composition of two morphisms for algebras is a morphism for algebras.
Let (A, ✓), (B,�), (C, )) 2 Ob(Alg(T)), f 2 homC (A,B) and g 2 homC (B,C) be morphism
for algebras then g � f 2 homC (A,C) and we have,

 � T (g � f) =  � T (g) � T (f)
= g � � � T (f)
= g � f � ✓.

Therefore, g � f is a morphism of algebras.
Composition of these algebras is associative since composition in C is associative.
For an algebra (A, ✓) and idA 2 homC (A,A) we have,

✓ � idA = ✓ = idA � ✓

Hence, idA is a morphism for algebras. For a morphism of algebras f 2 homAlg(T)((A, ✓A), (B, ✓B))
we have,

f � idA = f = idB � f.

Hence for each (A, ✓A) 2 Ob(Alg(T)), idA is an identity morphism. Therefore we have a
category.

7.1.1 Examples

The following example is stated in Adámek - Herrlick - Strecker [1] (Page 318, Example 20.5
(1)).

Example 7.11. Let idC = (idC , ⌘, µ) be the identity monad as defined in Example 7.3. Then
an algebra on idC is an object X 2 Ob(C ) and a morphism f 2 homC (X,X) such that the
diagrams (7.3) and (7.4) commute.

We have,
f � ⌘X = f � idX = idX

therefore, f = idX and,

f � T (f) = idX � idX
= f � µX .
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Hence, algebras are of the form (X, idX) for all X 2 Ob(C ).
A morphism of algebras for two algebras (X, idX) and (Y, idY ) is a morphism, f 2

homC (X,Y ) such that
idY � f = f � idX .

Therefore f is any morphism in C . So the category Alg(idC ))
⇠= C

The following Example 7.12 is stated in Adámek - Herrlick - Strecker [1] (Page 318, Ex-
ample 20.5 (2)).

Example 7.12. Let M = (T, ⌘, µ) be the monad defined in Example 7.4. An algebra of M,
(X, ✓) is a set X 2 Ob(Set) and a morphism ✓ 2 homSet(�(X), X) such that the diagrams
(7.4) and (7.3) commute. Hence we have for x 2 X ,

(✓ � ⌘X)(x) = ✓((x))

= idX(x)

therefore, x = ✓((x)).
For a general word of a word of X ,

�(�(x)) = ((x1, x2, . . . , xn), (y1, y2, . . . , ym), . . . . . . , (z1, z2, . . . , zr))

we have,

(✓ � T✓)(�(�(x))) = ✓(✓((x1, . . . , xn)), ✓((y1, . . . , ym)), . . . , ✓((z1, . . . , zr))))

= ✓((x1, . . . , zr))

= (✓ � µX)(�(�(x))).

Therefore, an algebra of M (X, ✓) defines a monoid (X, (� ·�), e) where e = () is the empty
word and composition is defined,

(� ·�) : X ⇥X ! X,

x · y 7! ✓((x, y)).

e = () is an identity since for any x 2 X ,

x · e = ✓((x)) = x

and (� ·�) is associative since given x, y, z 2 X ,

(x · y) · z = ✓((x, y)) · z
= ✓((✓((x, y)), z))

= ✓(x, y, z)

by the commutativity of diagram (7.4) and,

x · (y · z) = x · ✓((x, y))
= ✓((x, ✓(x, y)))

= ✓((x, y, z))

by the commutativity of diagram (7.4). Hence

(x · y) · z = x · (y · z).

58



MATH 5004M Basic Category Theory 2022/23

Therefore each algebra of M forms a monoid hence Alg(M) is a subcategory of Mon.
To show that Alg(M) ⇠= Mon we show every monoid can be defined by an algebra of

M. Let (X, ·, e) be a monoid then we can define the function ✓ as,

✓ : �(X) ! X

(x1, x2, . . . , xn) 7! x1 · x2 · · · · · xn.

Then we check (X, ✓) is an algebra of M. For an element x 2 X

(✓ � ⌘X)(x) = ✓((x))

= x

Therefore, diagram (7.3) commutes. For a general word of a word of X , �(�(x)),

(✓ � T✓)(�(�(x))) = ✓(((x1 · x2 · · · · · xn), (y1 · · · · · ym), . . . , (z1 · · · · · zr)))
= x1 · · · · · zr
= ✓((x1, . . . , zr))

= ✓(µx(�(�(x))))

= (✓ � µX)(�(�(x))).

Therefore, the diagram (7.4) commutes and hence (X, ✓) is an algebra of M.
This means (X, ✓) an algebra of M if and only if (X, ·, e) is a monoid. Hence there is a

one to one correspondence between monoids and algebras of M.

7.2 Adjoint Functors as monads

The following lemma can be found in Adámek - Herrlick - Strecker [1] (Page 318, Proposition
20.3). Where here we add the completed proof which was left as an exercise.

Lemma 7.13. Let F: D ! C and G: C ! D be functors and (F,G, ⌘, ") be an adjoint situa-
tion. We have an endofunctor, T = GF: D ! D and natural transformation G"F : T 2 ) T .
Then (GF, ⌘, G"F ) is a monad on D .

Proof. Since " : FU ) idMon is a natural transformation for each M 2 Ob(Mon) we have,

(" � FG")M = "M � F (G("M )),

= "FG(M) � "M ,

= (" � "FG).

Therefore, for each X 2 D ,

(µ � Tµ)X = (G"F �GFG"F )X

= (G(" � FG")F )X

= (G(" � "FG)F )X

= (G"F �G"FGF )X

= (µ � Tµ)X .
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Also we have,

(µ � T⌘)X = (G"F �GF⌘)X

= G("F � F⌘)X
= G(idF )X , by definition 5.7
= G(idFX )

= G(F (X))

= idGFX

= idTX

and,

(µ � ⌘T )X = (G"F � ⌘GF )X

= ((G" � ⌘G)F )X

= ((idG)F )X , by Definition 5.7
= (idGF (X)

)

= idGFX

= idTX .

Remark 7.14. The above shows that every adjoint situation gives rise to a monad, the fol-
lowing discussion shows that every monad has at least one adjoint situation which gives
rise to it.

The following Lemma 7.15 is stated in Adámek - Herrlick - Strecker [1] (Page 319, Propo-
sition 20.7) but not proven.

Lemma 7.15. Let D be a category and T = (T, ⌘, µ) be a monad over D . Then (FT, GT, ⌘T, "T)
is an adjoint situation where:

1.
G

T
: Alg(T) ! D

is the forgetful functor which sends (X, ✓1) 2 Ob(Alg(T)),

(X, ✓1) 7! X

and f 2 homAlg(T)((X, ✓1), (Y, ✓2)),
f 7! f

since f 2 homC (X,Y );

2.
F
T
: D ! Alg(T)

sends objects X 2 Ob(D),
X 7! (T (X), µX)

and morphisms f 2 homD(X,Y ),
f 7! T (f)

where T (f) 2 homAlg(T)((T (X), µX), (T (Y ), µY ));
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3.
"T : FTGT ) idAlg(T),

is defined for each (X, ✓) 2 Ob(Alg(T)) as,

"T(X, ✓) = ✓;

4. ⌘T = ⌘,.

Proof. For each X 2 Ob(D) we have (X,µX) 2 Ob(Alg(T)) by Lemma 7.8. Then we check
GT and FT are indeed functors by checking the axioms in Definition 3.1. For any two
morphisms, f 2 homAlg(T)((X, ✓1), (Y, ✓2)) and g 2 homAlg(T)((Y, ✓2), (Z, ✓3)) we have,

GT
(g � f) = g � f

= GT
(g) �GT

(f).

Given idX 2 homAlg(T)((X, ✓1), (X, ✓1)) we have,

GT
(idX) = idX .

Therefore GT is a functor.
Given f 2 homD(X,Y ) and g 2 homD(Y, Z) we have,

FT
(g � f) = T (g � f)

= T (g) � T (f)
= FT

(g) � FT
(f).

Given idX 2 homD(X,X) we have,

FT
(idX) = T (idX)

= idX since T is an endofunctor.

Therefore FT is a functor.
⌘ is defined as a natural transformation so we just check the naturality condition on ".

Given (X, ✓1), (Y, ✓2) 2 Ob(Alg(T)) and f 2 homAlg(T)((X, ✓1), (Y, ✓2))we have,

"(Y,✓2) � F
T
(GT

(f)) = ✓2 � FT
(f)

= ✓2 � T (f)
= f � ✓1, By Definition 7.6
= f � "(X,✓1).

Therefore " is a natural transformation.
To prove the above defines an adjoint situation we check the axioms in Definition 5.7.

For each X 2 Ob(D) we have,

("FT � FT⌘)X = "FT(X) � FT
(⌘X)

= "(T (X),µX) � FT
(⌘X)

= µX � FT
(⌘X)

= (µ � FT⌘)X

= idFT
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since T is a monad and FT and there is a one to one correspondence between FT
(X) and

T (X). For each (X, ✓) 2 Ob(Alg(T)) we have,

(GT" � ⌘GT
)(X,✓) = GT

("(X,✓)) � ⌘GT((X,✓))

= GT
(✓) � ⌘X

= ✓ � ⌘X
= idX , since (X, ✓) is an algebra of T
= idGT((X,✓)).

Therefore (FT, GT, ⌘, ") is an adjoint situation.

Remark 7.16. The above Lemma 7.15 gives only existence of an adjoint situation given a
monad and not uniqueness. In general a monad will not give rise to a unique adjoint situa-
tion.

We now define an important subcategory of the Eilenberg-Moore category of a monad,
T, the Kleisli category, and see how an adjoint situation from this category also gives rise to
the monad T. See Wiki [16] for more details on the Kleisli category.

Definition 7.17. Let C be a category and T = (T, ⌘, µ) be a monad over C then we define
the Kleisli category, KT as the full subcategory of Alg(T) whose objects are the free objects,
(T (X), ⌘X) for each X 2 Ob(C ).

The following lemma is adapted from MacLane [6] (Page 148, Theorem 3)

Definition 7.18. Let C be a category and T = (T, ⌘, µ) be a monad over C . We define the

category of adjoint situations for the monad T, adjT as:

1. The objects, (F: C ! X ,G: X ! C , ⌘, ") 2 Ob(adjT), are adjoint situations which
give rise to the monad T, that is (GF, ⌘, G"F ) = (T, ⌘, µ);

2. The morphisms, (K, idX ) are morphisms of adjoint situations defined in Definition
5.12 such that idX is the identity on X ;

3. Composition is composition of morphisms of adjoint situations as defined in Defini-
tion 5.13;

4. The identities are defined in Example 5.15.

Lemma 7.19. adjT as defined above in Definition 7.18 is a category.

Proof. The composition is associative since the composition of functors is associative. Hence
we have a category structure.

The following Lemma 7.20 can be found in MacLane [6] with no proof, here we omit the
proof.

Lemma 7.20. Let T = (T, ⌘, µ) be a monad and adjT be the corresponding category of
adjoint situations. Then the terminal object in adjT is the adjoint situation, (F

T
: D !

Alg(T),GT
: Alg(T) ! D , ⌘, "), defined in Lemma 7.15.

This result ties together different parts of this project. Had this project been longer
we would have discussed the proof and consequences. We also could have looked into
monoidal categories and how monoids generalise in other categories, this leads to the explo-
ration of the quote by James Iry [4]: ”a monad is a monoid in the category of endofunctors,
what’s the problem?”.
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