1.5. Universal morphisms and adjoint functors
In this section we see how the free and forgetful functors defined in Definition \ref{def:forgetfulfunctormon} and Definition \ref{def:freemonoid} are related by looking at universal morphism and adjoint functors. Definitions and notation from this section are from Clementino \cite{Maria} and Adámek - Herrlick - Strecker \cite{ACC}.
[Universal morphism]
Let $\cat{C}$ and $\cat{D}$ be categories and $\func{G}{C}{D}$ be a functors and $X\in\ob{\cat{D}}$.\ A universal morphism from $X$ to $G$ is a pair $(\eta_{X},C_{X})$ where $\eta_{X}\in\ho{X}{G(C_{X})}$ is a morphism and $C_{X}\in\ob{\mathscr{C}}$ such that for each $C\in\ob{\mathscr{C}}$ and each morphism $f\in\ho{X}{G(C)}$ there exists a unique morphism $\hat{f}\in\ho{C_{X}}{C}$ for which the diagram on the left \begin{equation}
\
\end{equation}
commutes.\
A universal morphism from $G$ to $X$ is a pair $(\varepsilon_{X},C_{X})$ where $\varepsilon_{X}\in\ho{G(C_{X})}{X}$ is a morphism and $C_{X}\in\ob{\cat{C}}$ such that for each $C\in\ob{\cat{C}}$ and each morphism $g\in\ho{G(C)}{X}$ there exists a unique morphism $\hat{g}\in\ho{C}{C_{X}}$ for which the diagram on the left
commutes.
[Adjoint]
Let $\cat{C}$ and $\cat{D}$ be categories and $\func{G}{\cat{C}}{\cat{D}}$ a functor. We say $G$ is right adjoint if for each object $X\in\ob{\cat{D}}$ there exists a universal morphism, $(\eta_{X},C_{X})$ from $X$ to $G$. We say $G$ is left adjoint if for each object $X\in\ob{\cat{D}}$ there exists a universal morphism, $(\epsilon_{X},C_{X})$ from $G$ to $X$. We say $G$ is adjoint if $G$ is either right adjoint or left adjoint.
\subsection{Example: Free/forgetful adjunction for monoids}
Let $\mathrm{F}\colon\mathbf{Set}\to\mathbf{Mon}$ be the free monoid functor defined in Definition \ref{def:freefunctmon} and $\mathrm{U}\colon\mathbf{Mon}\to\mathbf{Set}$ be the forgetful monoid functor as defined in Definition \ref{def:forgetfulfunctormon}. Then $\mathrm{F}$ is left adjoint. \begin{proof} For each $X\in\ob{\mathbf{Set}}$ let \begin{align} \eta\colon id_{\mathbf{Set}}&\to UF,\ \eta_{X}\colon X&\to U((\gamma(X),,\varnothing)),\ x&\mapsto (x). \end{align*}
Then given $(A,\circ,e_{A})\in\mathbf{Mon}$ and $f\in\ho[\mathbf{Set}]{X}{U((A,\circ,e_{A}))}$ let \begin{align} \hat{f}\colon(\gamma(X),,\varnothing)&\to(A,\circ,e_{A}),\ \hat{f}((x_{1},x_{2},\dots,x_{n}))&\mapsto f(x_{1})\circ f(x_{2})\circ\dots\circ f(x_{n}),\ \hat{f}(\varnothing)&\mapsto e_{A}. \end{align*}
We first show $\hat{f}$ is a monoid homomorphism. We ,have that
\begin{align} \hat{f}(\varnothing) = e_{A} \end{align}
and,
\begin{align} \hat{f}((x_{1},x_{2},\dots,x_{n},y_{1},y_{2},\dots,y_{n})) &= f(x_{1})\circ f(x_{2})\circ \dots\circ f(x_{n})\circ f(y_{1})\circ f(y_{2})\circ\dots\circ f(y_{n}))\ &= \hat{f}((x_{1},x_{2},\dots,x_{n}))\circ\hat{f}((y_{1},y_{2},\dots,y_{n})). \end{align}
Hence $\hat{f}$ is a monoid homomorphism. The diagram,
Commutes. So we need to show $\hat{f}$ is unique. Assume there exists monoid homomorphism $\hat{g}$ such that the diagram commutes. Then for each $x\in X$,
\begin{align} f(x) &= \hat{g}(\eta_{x}(x))\ &= \hat{g}((x))\ \end{align}
Since $\hat{g}$ is a monoid homomorphism,
\begin{align} \hat{g}((x_{1},x_{2},\dots,x_{n}))&=\hat{g}((x_{1}))\circ\hat{g}((x_{2}))\dots\circ\hat{g}((x_{n}))\ &= f(x_{1})\circ f(x_{2})\circ\dots\circ f(x_{n})\ &= \hat{f}. \end{align}
Therefore, since there is a unique $\hat{f}$ such that the diagram commutes for all $X\in\mathbf{Set}$. $F$ is left adjoint. \end{proof}
We will see later that Lemma \ref{lem:freeadj} implies $U$ is right adjoint.
\subsubsection{Equivalent definitions of adjoint functors}
The following Lemma \ref{lem:hombijection} followed from discussion with the supervisor and from the Wikipedia article on adjoint functors \cite{wiki:adjoint}. Here we add the proof.
Let $\cat{C}$ and $\cat{D}$ be categories, $\func{G}{\cat{C}}{\cat{D}}$ be a functor and for each $X\in\ob{\cat{D}}$ we have $(\eta_{X},C_{X})$ is a universal morphism from $X$ to $G$. Then given $C\in\cat{C}$ there exists a bijective function, defined as
\begin{align} \phi_{X,C}\colon\ho[\cat{D}]{X}{G(C)}&\to\ho[\cat{C}]{C_{X}}{C},\ f&\mapsto \hat{f}, \end{align}
where $\hat{f}$ is defined from the universal property in Diagram \eqref{eqn:uniarrowXG}. Further given $C^\prime\in\ob{\cat{C}}$ and $g\in\ho{C}{C^\prime}$ the following diagram commutes, \begin{equation}
\
\end{equation}
where $\mathrm{h}{C_X}$ is the functor defined in Lemma \ref{lem:homsetfunctor}.
In particular the $\phi{X,C}$, where $C\in \ob{\cat{C}}$, combine to give a natural isomorphism $\nattran{\phi_{X}}{\mathrm{h}{X}\circ G}{\mathrm{h}{C_{X}}}$.
\begin{proof}
First we show that for $C\in\ob{\cat{C}}$, $\phi_{X,C}$ is a bijection by showing it is surjective and injective. Given $f,f^\prime\in\ho[\cat{D}]{X}{G(C)}$ suppose $\hat{f}=\hat{f^\prime}$, then we have,
\begin{align} f &= G(\hat{f})\circ \eta_{X}\ &= G(\hat{f^\prime})\circ\eta_{X}\ &= f^{\prime}. \end{align}
Hence $\phi_{X,C}$ is injective. Given $g \in\ho[\cat{C}]{C_{X}}{C}$ we have $G(g)\in\ho[\cat{D}]{G(C_{X})}{G(C)}$ since $G$ is a functor. We can then construct $f=G(g)\circ\eta_{X}$ since $\eta_{X}\in\ho[\cat{D}]{X}{G(C_{X})}$ and $\cat{D}$ is a category, hence $g=\hat{f}$. Therefore $\phi_{X,C}$ is surjective and hence a bijection. We will now show the diagram \eqref{cd:homisomorph} commutes. Given $f\in\ho[\cat{D}]{X}{G(C)}$ we need to show
$$g\circ\phi_{X,C}(f) = \phi_{X,C^\prime}(G(g)\circ f).$$
We have,
\begin{align} g\circ\phi_{X,C}(f) &= g\circ \hat{f}\ &= \phi_{X,C^\prime}(\phi_{X,C^\prime}^{-1}(g\circ \hat{f}))\ &= \phi_{X,C^\prime}(G(g\circ \hat{f})\circ\eta_{X})\ &= \phi_{X,C^\prime}(G(g)\circ G(\hat{f})\circ\eta_{X})\ &= \phi_{X,C^\prime}(G(g)\circ f). \end{align}
\end{proof}
The following theorem is adapted from Adámek - Herrlick - Strecker \cite{ACC} (page 306 Theorem 19.1) where here we add the complete proof which was left as an exercise.
Let $\func{G}{\cat{C}}{\cat{D}}$ be a right adjoint functor and suppose that for each object $X\in\ob{\cat{C}}$ we are given a universal morphism $(\eta_{X},C_{X})$, from $X$ to $G$. \begin{enumerate}
\item There exists a unique functor $\func{F}{\cat{D}}{\cat{C}}$ such that the following two conditions hold: \begin{enumerate} \item $F(X) = C_{X}$; \item We have a natural transformation, \begin{align*} \nattran{\eta}{id_{\cat{D}}&}{GF}
\end{align*}
whose components are given by:
$$\eta_X\colon X \to G(C_X);$$
\end{enumerate} \item Further, we have a natural transformation $\nattran{\varepsilon}{FG}{id_{\cat{C}}}$ where for each $C\in\cat{C}$, $\varepsilon_{C}$ is the unique morphism for which, \begin{equation}
\end{equation} commutes;
\item We also have that the following identities are satisfied: \begin{enumerate} \item $\eta G \circ G\varepsilon = id_{G}$; \item $F\eta \circ \varepsilon F = id_{F}$. \end{enumerate} \end{enumerate} \begin{proof} Let $\func{F}{\cat{D}}{\cat{C}}$ be defined:
\begin{align} F\colon\ob{\cat{D}}&\to\ob{\cat{C}},\ X&\mapsto C_{X} \end{align}
and,
\begin{align} F\colon\ho[\cat{D}]{X}{Y}&\to\ho[\cat{C}]{F(X)}{F(Y)},\ f&\mapsto \widehat{\eta_{Y}\circ f}. \end{align}
This definition comes from the diagram,
which commutes since $\eta_{X}$ is a universal morphism.
If this is a functor then it is unique since it is unique on objects and for $f\in\ho[\cat{D}]{X}{Y}$ we have $\eta_{Y}\circ f\in\ho[\cat{D}]{X}{G(C_{Y})}$ and by Lemma \ref{lem:hombijection} there is a bijection between $\ho[\cat{D}]{X}{G(C_{Y})}$ and $\ho[\cat{C}]{C_{X}}{C_{Y}}$ hence $F$ is unique on morphisms.
We show $F$ is a functor. Given $X\in\ob{\cat{D}}$,
\begin{align} F(id_{X}) &= \widehat{\eta_{X} \circ id_{X}}\ &= \hat{\eta_{X}}\ &= id_{C_{X}}\ &= id_{F(X)}. \end{align}
Equivalently the diagram,
commutes since $\eta_{X}$ is a universal morphism.
We also have for $f\in\ho[\cat{D}]{X}{Y}$ and $g\in\ho[\cat{D}]{Y}{Z}$, the diagram,
commutes since $\eta_{X}$ and $\eta_{Y}$ are universal morphisms and we also have,
commutes since $\eta_{X}$ is a universal morphism, in particular,
$$G(\widehat{\eta_{Z}\circ(g\circ f)} = G(\widehat{\eta_{Z}\circ g}) \circ G(\widehat{\eta_{Y}\circ f}),$$
therefore, since $G$ is a functor,
\begin{align} F(g\circ f) &= \widehat{\eta_{Z} \circ g\circ f} \ &= \widehat{\eta_{Z}\circ g} \circ \widehat{\eta_{Y}\circ f}\ &= F(g)\circ F(f). \end{align}
Hence $F$ is a functor.
Define $\nattran{\eta}{id_{\cat{D}}}{FG}$ for each $X\in\ob{\cat{D}}$, $\eta_{X}$ is the universal morphism given. Then clearly $\eta_{X}\in\ho[\cat{D}]{X}{GF(X)}$ since $F(X) = C_{X}$.
We show the naturality condition holds. Given $X,Y\in\ob{\cat{D}}$ and $f\in\ho[\cat{D}]{X}{Y}$,
commutes since $\eta_{X}$ is a universal morphism. Hence the naturality condition holds and $\eta$ is a natural transformation. $\nattran{\varepsilon}{FG}{id_{\cat{C}}}$ exists since $\eta_{G(C)}$ is a universal morphism we show the naturality condition holds. Given $C,C^\prime\in\ob{C}$ and $f\in\ho[\cat{C}]{C}{C^\prime}$ we have,
\begin{align} G(f\circ \varepsilon_{C})\circ \eta_{G(C)} &= G(f)\circ G(\varepsilon_{C}) \circ \eta_{G(C)}\ &= G(f) \circ id_{G(C)} \ &= G(f) \ &= G(\varepsilon_{C^\prime}) \circ \eta_{G(C^\prime)} G(f) \ &= G(\varepsilon_{C^\prime}) \circ GFG(f)\circ \eta_{G(C)}, &\text{ by the naturality of $\eta$,}\ &= G(\varepsilon_{C^\prime}\circ FG(f)) \circ \eta_{G(C)}. \end{align}
Therefore, $$f\circ \varepsilon_{C} = \varepsilon_{C^\prime}\circ FG(f).$$
The identity (a) is satisfied by the definition of $\varepsilon$ Diagram \eqref{eqn:counitdef}. To show identity (b) first note since $\eta$ is a natural transformation from $id_{\cat{D}}$ to $GF$ we have for each $D\in\ob{\cat{D}}$,
\begin{align} (\eta GF \circ \eta)D &= \eta{G(F(D))} \circ \eta_D \ &= G(F(\eta_D)) \circ \eta_{D}\ &=(GF\eta \circ \eta)_D. \end{align}
Therefore by using identity (a) we have:
\begin{align} G(id_{F})\circ \eta &= id_{G}F \circ \eta \ &= G\varepsilon F \circ \eta GF \circ \eta \ &= G\varepsilon F \circ GF \eta \circ \eta \ &= G(\varepsilon F \circ F\eta)\circ \eta. \end{align}
Hence,
$$id_{F} = \varepsilon F \circ F\eta.$$
\end{proof}
\subsection{Adjoint situations}
Definition \ref{def:adjsituations} if adapted from Adámek - Herrlick - Strecker \cite{ACC} page 307.
An adjoint situation $(F,G,\eta,\varepsilon)$ is a pair of functors $\func{F}{\cat{D}}{\cat{C}}$ and $\func{G}{\cat{C}}{\cat{D}}$ and a pair of natural transformations $\nattran{\eta}{id_{\cat{D}}}{GF}$ and $\nattran{\varepsilon}{FG}{id_{\cat{C}}}$. Satisfying the triangle identities: \begin{enumerate} \item $\varepsilon F \circ F\eta = id_{F}$; \item $G\varepsilon \circ \eta G = id_{G}$. \end{enumerate} We call $\eta$ the unit and $\varepsilon$ the co-unit.
Given a right adjoint functor $\func{G}{\cat{C}}{\cat{D}}$, Theorem \ref{thm:adjsituation} tells us that there exists at least one adjoint situation $(F,G,\eta,\varepsilon)$. The following Corollary \ref{cor:homdefadj} followed from discussions with the supervisor and here we provide a proof. \begin{cor}
Let $\cat{C}$ and $\cat{D}$ be categories, $\func{G}{\cat{C}}{\cat{D}}$ be a functor. The following are equivalent: \begin{enumerate} \item For each $D\in\ob{\cat{D}}$, $(\eta_{D},F(D))$is a universal morphism from $D$ to $G$; \item $(F,G,\eta,\varepsilon)$ is an adjoint situation; \item The family of functions:
$$\phi_{D,C}\colon \ho[\cat{C}]{F(D)}{C}\to \ho[\cat{D}]{D}{G(C)},$$ are bijections. That is for all $D\in\ob{\cat{D}}$, there exists a natural isomorphism $\nattran{\phi_{D}}{\mathrm{h}{D}\circ G}{\mathrm{h}{G(C)}}$. \end{enumerate} \end{cor} \begin{proof} (1) $\implies$ (2) by Theorem \ref{thm:adjsituation} and (1) $\implies$ (3) by Lemma \ref{lem:hombijection}. Suppose that for each object $D\in\ob{\cat{D}}$ we have a natural isomorphism $\nattran{\phi_{D}}{\mathrm{h}{D}\circ G}{\mathrm{h}{G(C)}}$. Then for each object $D\in\ob{\cat{D}}$ and each $C\in\ob{\cat{C}}$, $f\in\ho[\cat{D}]{D}{G(C)}$ there is a unique morphism $\phi_{D}(f)\in\ho[\cat{C}]{F(D)}{C}$, therefore $(\eta_{D},F(D))$ where $\eta_{D}$ is the unique morphism for which the diagram, \begin{equation*}
\end{equation} commutes. Therefore (3) $\implies$ (1). Suppose we have an adjoint situation $(F,G,\eta,\varepsilon)$ then for $C\in\ob{\cat{C}}$, $D\in\ob{\cat{D}}$ and $f\in\ho[\cat{D}]{D}{G(C)}$ the diagram on the left, \begin{equation}
\end{equation} commutes. Therefore for a morphism $f$ there exists a morphism $\hat{f}=\varepsilon_{C}\circ F(f)$ for which the diagram commutes. To show uniqueness if $\hat{f}\in\ho[\cat{C}]{F(D)}{C}$ where $f= G(\hat{f})\circ \eta_D$ we have the diagram, \begin{equation}
\end{equation*} commutes, and therefore $\hat{f} = \varepsilon_{C}\circ F(f)$ is the unique morphism for which $f= G(\hat{f})\circ \eta_D$, hence $(\eta_{D},F(D))$ is a universal morphism from $D$ to $G$ for all $D\in\ob{\cat{D}}$. Therefore (2) $\implies$ (1). \end{proof}
The following Lemma \ref{lem:dualityofadjoints} is adapted from Adámek - Herrlick - Strecker \cite{ACC} (Page 308 Proposition 19.7)
Given an adjoint situation $(F,G,\eta,\varepsilon)$ we have: \begin{enumerate} \item $G$ is a right adjoint functor. \item For each $D\in\ob{\cat{D}}$, $(\eta_{D},F(D))$ is a universal morphism from $D$ to $G$. \item $F$ is a left adjoint functor. \item For each $C\in\ob{\cat{C}}$, $(\varepsilon_{C},G(C))$ is a universal morphism from $F$ to $C$ \end{enumerate} \begin{proof} By Corollary \ref{cor:homdefadj} if we have an adjoint situation, $(F,G,\eta,\varepsilon)$ then $(\eta_{D},F(D))$ are universal morphisms hence $G$ is right adjoint. The proof for (4) and thus (3) follows similarly to the proof of \ref{cor:homdefadj}. Suppose we have the adjoint situation $(F,G,\eta,\varepsilon)$, then for $D\in\ob{\cat{D}}$, $C\in\ob{\cat{C}}$ and $f\in\ho[\cat{C}]{F(D)}{C}$ the diagram on the left, \begin{equation*}
,
\end{equation*}
commutes. Therefore for a morphism $f$ there exists a morphism $\hat{f}= G(f)\circ\eta_{D}$ for which the diagram commutes. To show uniqueness suppose we have $\hat{f}\in\ho[\cat{D}]{G(C)}{D}$ where $f = \varepsilon_{C}\circ F(\hat{f})$, then we have the diagram,
\begin{equation*}
,
\end{equation*}
commutes, and therefore $\hat{f}= G(f)\circ\eta_{D}$ is the unique morphism for which $f = \varepsilon_{C}\circ F(\hat{f})$, hence $(\varepsilon_{C},G(C))$ is a universal morphism from $F$ to $C$ for all $C\in\ob{\cat{D}}$ and therefore $F$ is a left adjoint functor. \end{proof} The following Lemma \ref{lem:adjsituniiso} is adapted from Adámek - Herrlick - Strecker \cite{ACC} (Page 309 Proposition 19.9) however here we give the proof from the perspective of the left adjoint functor $F$.
Let $\func{F}{\cat{D}}{\cat{C}}$ be a left adjoint functor and $(F,G,\eta,\varepsilon)$ be an adjoint situation. \begin{enumerate} \item If there is an adjoint situation $(F,G^\prime,\eta^\prime,\varepsilon^\prime)$ then there exists a natural isomorphism $\nattran{\tau}{G}{G^\prime}$ where $\varepsilon^\prime = F\tau \circ \varepsilon$ and $\eta^\prime = \eta\circ\tau^{-1}F$; \item If we have a functor $G^\prime$ and a natural isomorphism $\nattran{\tau}{G}{G^\prime}$ then $(F,G^\prime,\eta\circ\tau^{-1}F,F\tau\circ\varepsilon)$ is an adjoint situation. \end{enumerate} \begin{proof} (1): By Lemma \ref{lem:dualityofadjoints} we have for each $C\in\ob{\cat{C}}$, $(\varepsilon_{C},G(C))$ and $(\varepsilon^\prime_{C},G^\prime(C))$ are universal morphisms from $F$ to $G$. Therefore there is an isomorphism $\tau_{C}$ with $\varepsilon_{C}^\prime=F\tau_{C} \circ\varepsilon_{C}$ by Definition \ref{def:uniarrow} and hence $\nattran{\tau}{G}{G^\prime}$ is a natural isomorphism with $\varepsilon^\prime=F\tau \circ\varepsilon$. For each $D\in\ob{\cat{D}}$ we have:
\begin{align} \varepsilon_{F(D)} \circ F(\eta_{D}) &= id_{F(D)}\ &= \varepsilon^\prime_{F(D)} \circ F(\eta^\prime_{D})\ &= F\tau_{F(D)}\circ\varepsilon_{F(D)} \circ F(\eta^\prime_{D})\ &= \varepsilon_{F(D)} \circ F(\tau_{F(D)}\circ \eta^\prime_{D}). \end{align}
Therefore $\eta_{D} = \tau_{F(D)} \circ \eta^\prime_{D}$, and hence $\eta^\prime=\eta\circ\tau^{-1}F$.
(2): We have for each $D\in\ob{\cat{D}}$,
\begin{align} (F(\eta\circ\tau^{-1}F)\circ (F\tau\circ\varepsilon)F) (D) &= F(\eta_{D})\circ F(\tau^{-1}{F(D)})\circ F(\tau{F(D)})\circ\varepsilon_{F(D)} \ &= F(\eta_{D})\circ F(\tau^{-1}{F(D)}\circ \tau{F(D)})\circ\varepsilon_{F(D)} \ &= F(\eta_{D})\circ\varepsilon_{F(D)}\ &= id_{F} (D) \end{align}
and for $C\in\ob{\cat{C}}$ we have,
\begin{align} (\eta\circ\tau^{-1}F)G^\prime \circ G^\prime(F\tau\circ\varepsilon)(C) &= \eta_{G^\prime(C)}\circ\tau^{-1}{F(G^\prime(C))} \circ G^\prime(F(\tau{C})\circ\varepsilon_{C}) \ &= \eta_{G^\prime(C)}\circ\tau^{-1}{F(G^\prime(C))} \circ G^\prime(F(\tau{C}))\circ G^\prime(\varepsilon_{C})\ &= \eta_{G^\prime(C)}\circ G^\prime(\varepsilon_{C}) \ &=id_{G^\prime}(C). \end{align}
Therefore $(F,G^\prime,\eta\circ\tau^{-1}F,F\tau\circ\varepsilon)$ is an adjoint situation by Definition \ref{def:adjsituations}. \end{proof}
\subsubsection{Category of adjoint situations}
This section uses ideas from MacLane \cite{MacLane}, specifically chapter IV. To define a category of adjoint situations we need to define morphisms between adjoint situations. The following Definition \ref{def:morphadjsitu} is adapted from MacLane \cite{MacLane} (Page 99).
Let $(\func{F}{\cat{D}}{\cat{C}},\func{G}{\cat{C}}{\cat{D}},\eta,\varepsilon)$ and $(\func{F^\prime}{\cat{D^\prime}}{\cat{C^\prime}},\func{G^\prime}{\cat{C^\prime}}{\cat{D^\prime}},\eta^\prime,\varepsilon^\prime)$ be adjoint situations. A morphism between adjoint situations from $(F,G,\eta,\varepsilon)$ to $(F^\prime,G^\prime,\eta^\prime,\varepsilon^\prime)$ is a pair of functors $(\func{K}{\cat{D}}{\cat{D^\prime}},\func{L}{\cat{C}}{\cat{C^\prime}})$ such that: \begin{enumerate} \item For each object $C\in\ob{\cat{C}}$,
$$(K\circ F\circ G)(C) = (F^\prime\circ G^\prime\circ K)(C) = (F^\prime\circ L\circ G)(C)$$
and each morphism $f\in\ho[\cat{C}]{C}{C^\prime}$
$$(K\circ F\circ G)(f) = (F^\prime\circ G^\prime\circ K)(f) = (F^\prime\circ L\circ G)(f).$$
That is the diagram, \begin{equation}
\end{equation} commutes; \item For each object $C\in\ob{\cat{C}}$ we have,
$$\varepsilon^\prime _{K(C)} = K(\varepsilon_C),$$
and for each object $D\in\ob{\cat{D}}$ we have,
$$L(\eta_D) = \eta^\prime_{L(D)}.$$
\end{enumerate}
Let $(\func{F}{\cat{D}}{\cat{C}},\func{G}{\cat{C}}{\cat{D}},\eta,\varepsilon)$, $(\func{F^\prime}{\cat{D^\prime}}{\cat{C^\prime}},\func{G^\prime}{\cat{C^\prime}}{\cat{D^\prime}},\eta^\prime,\varepsilon^\prime)$ and $(\func{F^{\prime\prime}}{\cat{D^{\prime\prime}}}{\cat{C^{\prime\prime}}},\func{G^{\prime\prime}}{\cat{C^{\prime\prime}}}{\cat{D^{\prime\prime}}},\eta^{\prime\prime},\varepsilon^{\prime\prime})$ be adjoint situations and let $(\func{K}{\cat{D}}{\cat{D^\prime}},\func{L}{\cat{C}}{\cat{C^\prime}})$ and $(\func{K^\prime}{\cat{D^\prime}}{\cat{D^{\prime\prime}}},\func{L^\prime}{\cat{C^\prime}}{\cat{C^{\prime\prime}}})$ be morphisms of adjoint situations. Then $(K^\prime \circ K,L^\prime\circ L)$ is a morphism of adjoint situations. \begin{proof} First note $\func{K^\prime \circ K}{\cat{D}}{\cat{D^\prime}}$ and $\func{L^\prime\circ L}{\cat{C}}{\cat{C^\prime}}$ are functors since they are the composition of functors. We have the diagram, \begin{equation*}
\end{equation*} commutes since all parts of the diagram commute. Then for each $C\in\ob{\cat{C}}$ we have the following,
\begin{align} \varepsilon^{\prime\prime}{K^\prime(K(C))} &= K^\prime(\varepsilon^\prime{K(C)}) \ &= K^\prime(K(\varepsilon_{C})) \end{align}
and for each $D\in\ob{\cat{D}}$ we have,
\begin{align} L^\prime(L(\eta_{D})) &= L^\prime(\eta_{L(D)}) \ &= \eta_{L^\prime(L(D))}. \end{align}
Therefore $(K^\prime \circ K, L^\prime \circ L)$ is a morphism of adjoint situations. \end{proof}
We define the composition of two morphisms of adjoint situations, $(L,K)$ and $(L^\prime,L^\prime)$ as $$(L^\prime,K^\prime)\circ(L,K) = (K^\prime \circ K, L^\prime \circ L)$$
Let $(\func{F}{\cat{D}}{\cat{C}},\func{G}{\cat{C}}{\cat{D}},\eta,\varepsilon)$ be an adjoint situation. Then $(id_{\cat{C}},id_{\cat{D}})$ a morphism of adjoint situations from $(F,G,\eta,\varepsilon)$ to $(F,G,\eta,\varepsilon)$. In fact we have that this morphism acts as an identity with respect to morphisms of adjoint situations and the composition defined above in Definition \ref{def:compadjsit}. \begin{proof} We need to show Diagram \ref{dia:morphadjsitufunc} commutes, so we have,
\begin{align} id_{\cat{C}}\circ F\circ G &= F\circ G \ &= F\circ G\circ id_{\cat{C}} \ &= F\circ G \ &= F\circ id_{\cat{D}} \circ G. \end{align}
We also have for each $C\in\ob{\cat{C}}$,
\begin{align} \varepsilon_{id_{C}(C)} &= \varepsilon_{C} \ &= id_{\cat{C}}(\varepsilon_C) \end{align}
and each $D\in\ob{\cat{D}}$,
\begin{align} id_{\cat{D}}(\eta_{D}) &= \eta_{D} \ &= \eta_{id_{\cat{C}}(D)}. \end{align}
$(id_{\cat{C}},id_{\cat{D}})$ clearly acts as an identity since for any morphism $(L,K)$ from any adjoint situation to $(F,G,\eta,\varepsilon)$ and $(L^\prime,K^\prime)$ from $(F,G,\eta,\varepsilon)$ to any adjoint situation,
\begin{align} (L,K)\circ(id_{\cat{C}},id_{\cat{D}}) &= (L\circ id_{\cat{C}},K\circ id_{\cat{D}})\ &= (L,K) \end{align}
and,
\begin{align} (id_{\cat{C}},id_{\cat{D}})\circ(K^\prime,L^\prime) &= (id_{\cat{C}}\circ K^\prime,id_{\cat{D}}\circ L^\prime)\ &= (L^\prime,K^\prime). \end{align}
\end{proof}
\subsection{Composition of adjoint functors}
The next Definition \ref{def:FadjointtoG} is adapted from \cite{ACC} (Page 309, Definition 19.10).
Let $\func{G}{\cat{C}}{\cat{D}}$ and $\func{F}{\cat{D}}{\cat{C}}$ be functors. $F$ is left adjoint to $G$ and $G$ is right adjoint to $F$, written $F\dashv G$ if there exists an adjoint situation $(F,G,\eta,\varepsilon)$.
The following Lemma \ref{lem:comadjoint} is adapted from Leinster \cite{Leinster} (Page 49, Remark 2.1.11) here we add a proof.
Let $\cat{C}$, $\cat{D}$ and $\cat{E}$ be categories, $\func{G}{\cat{C}}{\cat{D}}$ be right adjoint to $\func{F}{\cat{D}}{\cat{C}}$ and $\func{G^\prime}{\cat{D}}{\cat{E}}$ be right adjoint to $\func{F^\prime}{\cat{E}}{\cat{D}}$. Then $\func{G^\prime \circ G}{\cat{C}}{\cat{E}}$ is right adjoint to $\func{F \circ F^\prime}{\cat{E}}{\cat{D}}$ and given $C\in\ob{\cat{C}}$ and $E\in\ob{\cat{E}}$ we have,
$$\ho[\cat{C}]{F(F^\prime(E))}{C}\cong \ho[\cat{D}]{F^\prime(E)}{G(C)}\cong\ho[\cat{E}]{E}{G^{\prime}(G(C))}.$$
\begin{proof} We have for any $E\in\ob{\cat{E}}$, $F^\prime(E) \in \ob{\cat{D}}$ hence since there is an adjoint situation $F$,$G$ $$\ho[\cat{C}]{F(F^\prime(E))}{C}\cong \ho[\cat{D}]{F^\prime(E)}{G(C)}.$$ Similarly, for any $C\in\ob{\cat{C}}$, $G(C)\in\ob{\cat{D}}$ hence since there is an adjoint situation $G^\prime$, $F^\prime$ we have,
$$\ho[\cat{D}]{F^\prime(E)}{G(C)}\cong\ho[\cat{E}]{E}{G^{\prime}(G(C))}.$$
\end{proof}
Lemma \ref{lem:comadjoint} shows that if we compose two adjoint functors then we get an adjoint functor.
\subsection{Examples}
The following Example \ref{exe:yonedaadj} came from a discussion with the supervisor and can be found in Leinster \cite{Leinster} (Page 47, Example 2.16). Example \ref{exe:yonedaadj} can also be found in Adámek - Herrlick - Strecker \cite{ACC} (Page 307, Example 19.4 (3)).
Let $M\in\ob{\mathbf{Set}}$ be a set then we have a functor
$$(-)\times M \colon \mathbf{Set} \to\mathbf{Set} $$
defined for each object $X\in\ob{\mathbf{Set}}$ as,
$$X\mapsto X\times M,$$
the usual direct product of sets, and for each $f\in\ho[\mathbf{Set}]{X}{Y}$,
$$f\mapsto f\times M$$
where,
\begin{align} f\times M \colon X\times M &\to Y\times M,\ (x,m)&\mapsto (f(x),m). \end{align}
Recall we also have the functor $h_{M}$ defined in Lemma \ref{lem:homsetfunctor}.
We can define the natural transformation $\nattran{\eta}{id_{\mathbf{Set}}}{{h_{M}((-)\times M)}}$ where for each $X\in\ob{\mathbf{Set}}$,
\begin{align} \eta_{X}\colon X &\to h_{M}(X\times M),\ x&\mapsto \eta_{X}^{(x)} \end{align}
where,
\begin{align} \eta_{X}^{(x)}\colon M&\to X\times M,\ m&\mapsto (x,m). \end{align}
Then we have a unique function defined
\begin{align} \hat{f}\colon X\times M&\to Z,\ (x,m)&\mapsto f_{x}(m) \end{align}
where,
\begin{align} f_{x}\colon M&\to Z,\ m &\mapsto (f(x))(m) \end{align}
for which the diagram on the left,
commutes.
The co-unit $\nattran{\varepsilon}{(h_{M}(-))\times M}{id_{\mathbf{Set}}}$ is defined for each $S\in\ob{\mathbf{Set}}$ as the unique morphism which, \begin{equation*}
\end{equation*} commutes. Therefore define,
\begin{align} \varepsilon_{S}\colon (h_{M}(S))\times M &\to S,\ (g_{t},m)&\mapsto g_{t}(m) \end{align}
then for each $g\in\ho[\mathbf{Set}]{S}{T\times M}$ there is a unique function given,
\begin{align} \hat{g}\colon T &\to h_{M}(S)\ t&\mapsto g_{t} \end{align}
where,
\begin{align} g_{t}\colon M&\to S,\ g_{t}(m)&\mapsto g(t,m) \end{align}
for which the diagram on the left,
commutes.
Now we can classify all other adjoint situations by looking at bijections; Let $M^\prime$ be a set such that there exists a bijection $\tau\colon M\to M^\prime$. $\tau$ can be realised as a natural transformation
$$\nattran{\tau}{(-)\times M}{(-)\times M^\prime}$$
where for each $X\in\ob{\mathbf{Set}}$ we have,
\begin{align} \tau_{X}\colon X\times M&\to X\times M^\prime,\ (x,m)&\mapsto (x,\tau(m)). \end{align}
We show the naturality condition holds. Let $X,Y\in\ob{\mathbf{Set}}$ and $f\in\ho[\mathbf{Set}]{X}{Y}$ then for $(x,m)\in X\times M$,
\begin{align} (\tau_{Y}\circ f\times M )((x,m))&= (\tau_Y((f(x),m))) \ &= (f(x),\tau(m))\ &= f\times M((x,\tau(m))) \ &= f\times M \circ \tau_{X}((x,m)) \end{align}
Therefore the naturality condition holds. $\tau$ has a natural inverse
$$\nattran{\tau^{-1}}{(-)\times M^{\prime}}{(-)\times M}$$
where for each $X\in\ob{\mathbf{Set}}$ we have,
\begin{align} \tau_{X}^{-1}\colon X\times M&\to X\times M^\prime,\ (x,m^\prime)&\mapsto (x,\tau^{-1}(m^\prime)). \end{align}
since $\tau$ is a bijection. Hence $\tau$ is a natural isomorphism.
So for the functor $h_{M}$ we have adjoint situations $(\tau((-)\times M),h_{M},h_{M}\tau \circ \eta,\varepsilon\circ\tau^{-1}h_{M})$.
\pagebreak