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Abstract

A quasi-category is a model for an (oo, 1)-category, that is a category with objects, mor-
phims, morphisms between morphisms, and morphims between morphisms of every higher
dimension. Further, every morphism of dimension 2 or higher is invertable. In this report we
will discuss how some results from regular category theory can translate into quasi-category
theory, in particular we will discuss joins and slices, initial and terminal objects and (co)limits.
An introductory exposition of quasi-categories can be found in Markus Land [2] and an in
depth exploration can be found in Jacob Lurie [3], good expositions can also be found in
Riehl [4] and Kapulkin [1]].
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1 Simplicial sets and quasi-categories

In this section we define the framework of quasi-categories and why this is a good model for
(00, 1)-categories. First we define the simplex category and simplicial sets.

Definition 1.1. The simplex category A is the category whose:
* Objects are posets [n] ={0 <1< -.- <n}.
* Morphisms are monotone maps.

The composition and identities are canonical.

We call a presheaf X: A” — Set a simplicial set and call the category of presheaves sSet =
Set™”.

Definition 1.2. The following simplicial sets will be significant:
e We call the presheaf representing [n],
A" = sSet(—, [n])
the n-simplex.
e We call
Ar= ) Afcar
keECn]

the kth horn of A™.
Given a simplicial set X we write X ([n]) = X, for its set of n-simplicies and by the Yoneda

Lemma we have each n-simplex =z € X,, corresponds to a map z: A,, — X. We will call the set
of 0-simplicies the objects of X and X; the morphisms of X.

Definition 1.3. The n-skeleton is the functor sk, : sSet — sSet defined as sk, (X) = 4i*(X) where
i: A<, — A is the inclusion of the full subcategory of A with objects [m] for m < n. The n-
coskeleton is the functor cosk,,: sSet — sSet defined as cosk, (X ) = i.i*(X). Concreteley, we have
the k-simplicies,

cosky (X)) = sSet(sk,(A¥), X).

Remark 1.4. sk, - cosk,,.

Definition 1.5. There is a fully faithful embedding of Cat in to sSet called the Nerve, denoted
N: Cat — sSet. This functor admits a left adjoint called the realisation 7: sSet — Cat.

We omit the proof of the following Lemma, which can be found in [5].

Lemma 1.6. The nerve of a category is 2-coskeletal, that is N¢' = cosks N€ .



1.1 Quasi-categories

Here we will build up some fundamental ideas of quasi-categories and how they are a natural
extension of categories.

Definition 1.7. A quasi-category is a simplicial set C': A”? — Set such that for any integers n > 2
and 0 < k < n any morphism of the form A} — C extends to a morphism A" — C. A map of
quasi-categories is a map of simplicial sets and therefore the category of quasicategories is a full
subcategory of sSet

We call the horns A} for 0 < k£ < n, inner horns. Recall that if we included the endpoints this
would be the definition of a Kan complex, and so every Kan complex is a quasi-category. We
will now see that the nerve functor also provides an example of a quasi-category.

Definition 1.8. The category Cat of locally small category fully embeds into the category sSet
via the nerve functor N: Cat — sSet defined as N(%),, = Cat([n],?).

Remark 1.9. The nerve of [n] is N([n]) = A,.
The following proposition and proof are thanks to Riehl and Verity [5].
Proposition 1.10. Given a category ¢ the nerve, N¢ is a quasi-category.

Proof. We have that the nerve of a category is isomorphic to its 2-skeleton by|1.6{so N€ = ¢, via
the adjuntion in[I.4we have the lifting problem,

SkQAZ — N¥

P
-
-
-
-
.
-
-

Sk)gAn

For n > 4 the inclusion sk A} — sk A™ is an isomorphism and hence the lift has unique solu-
tions. The remaining horn for n = 2 has a lift since two morphims in a category admit a unigue
composite and the remaining horns for n = 3 admit a lift since composition is associative up to
equality and hence this is also a unique filler. O

The following corollary can be found in Land [2] (Thm 1.1.52).

Corollary 1.11. Let C be a quasi-category. If all inner horn inclusions A} — A™ for 0 < k < n,
n > 2 admit a unique filler then there are unique fillers sp,, — A" for n > 2 and C' = N¥ for
some category €. The associated diagram is:

Ay — C
A

7z
7
7
l !
7z

ATL

Proof. The full proof can be found in Land [2]. Suppose C' = N% for some category ¢ then if
n = 2 we have one inner horn, A7. Suppose the filler is not unique, since C' = N% we have a pair



of composable morphisms in &, f, g such that when we fill the horn in N¢ we get two different

composites,
Y Y
f g f g
« a/
x - y 2 x = > 2

Then we must have h = A’ and o = o’ since, in ¢ the composition of two morphisms is unique.
For n > 3 we can proceed by induction on n (note that A™*! = A" x A see[l.19below).

Suppose C'is a quasi-category with unique horn liftings. Then we can construct a category
¢ as follows: The objects are the 0-simplicies of C. The morphims from z to y are 1-simplicies
of C' such that for a 1-simplex f dyf = y and 0, f = z. The identity at x is the degeneracy o(z.
Composition is given by the unique horn filling A7 — A'. It can be checked that this is a well
defined category. It remains to show that C' = N¥. Since an n-simplex of C' is determined by
the restriction to the spine we see a map p: C' — N% has to be isomorphic on 0 and 1-simplicies
and also satisfy the following commutative square.

C, > N6,

l !

Ciyx+-wx(Cf ———— N€ x---x NC,

We have that the left and right maps are isomorphism and the bottom map is an isomorphism
since C' and N¢ are isomorphic on 1-simplicies. Therefore, by 2 — of — 3 the top map is an
isomorphism. O

Here we will state informally that the theory of categories extends to the theory of quasi-
categories, that is the concepts in quasi-categories become there related concepts in categories
when restricted along the nerve functor.

We can define a similar notion of a functor quasi-category as follows,

Definition 1.12. Let X be a simplicial set and C' a be quasi-category. Define the quasi-category
of functors between X and C as Fun(X,C) = C¥.

We proved in lectures for a simplicial set C¥ is a quasi-category when C'is a quasi-category.
The following is the quasi-category definition for opposite categories, can be found in [3].

Definition 1.13. Let X be a simplicial set. We define X? as the simplicial set with n-simplicies,
X» = X,, face maps;
dii sz — X’s]il = dn—i: Xn — Xn—l

and degeneracy maps,
O
o0 X — Xnﬁl =0p-1: X, — X,_1.

Remark 1.14. If C'is a quasi-category then C” is a quasi-category.

Definition 1.15. We call a simplicial set X contractible if there exits a simplicial homotopy H: X x
A' — X such that H|ya1 = [const,, idx] where const, is the constant map at an object z € X and
idx is the identity map on X.

The following criterion for contractibility is thanks to Kapulkin [1] (3.3.2)
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Proposition 1.16. Let X be a simplicial set, then X is contractible if and only if for all n > 2 and
maps JA™ — X we have an extension to A" — X that s,

OA" —— X
[~
ATL
commutes.
Lemma 1.17. Let X be a simplicial set. X is contractible if and only if X" is contractible.

Proof. Here we give one direction, the other is dual. Suppose X is contractible, then we have a
homotopy H: X x A! — X with H|ya1 = [const,,idx]. But then we can construct the homotopy
Her: XP x A — X with H|8A1 = [COnStz,’idxop]. ]

The following proposition can be found in Land [2] here we give the dual proof.

Proposition 1.18. Let € be a category. If ¥ has an initial or terminal object then N(%) is con-
tractible.

Proof. We give the proof for ¢ with a terminal object, 1. We have functors Const,: € — ¢ and
idg: € — €. There is a natural transformation «: idy = Const; where for each object X € €,
ay = X — 1. Naturality,

X 241
17l

follows from uniqueness of X — 1. The natural transformation can be seen as a functor H,: X x
[1] — X with H|p) = [idg, const;] and then passing through the nerve functor gives a simplicial
homotopy, NH,: N¢ x A' — N% with NH,|an, = [idn,const;]. This can be viewed as a
homotopy HP: N€? x A — N€ with H?|ga1 = [constyes, idxer] S0 N€F is contractible and
therefore N¢ is contractible by lemma O

Definition 1.19. Let X and Y be simplicial sets. We define the join X % Y as
(X+Y)= || XixV;
i+j=n—1

Definition 1.20. For a simplicial set X we define the functor X | — as the right adjoint to X » —
and — | X as the right adjoint to — x X.

Remark 1.21. Notice that  is non symmetric, so X x — is not isomorphic to — x X in general.

We have a notion of composition of morphims in quasi-categories which we will now discuss.
The following is from [4].

Remark 1.22. We can characterise the A} horn as the pushout,

AO do y AI

of L

Al —— A2

notice that all the morphisms are cofibrations.



Recall that a morphism in a quasi-category C'is a one simplex of C, or in other words a map
f: Al — C. So we can hom in to a quasi-category C' with the pushout above to obtain the
pullback,

A0 ds Al
c* +——C

s ]
(L E—

We have that all the morphisms in this pullback are now fibrations. We can think of C'% as
the quasi-category of composable arrows in C. Also notice C*' = (' so the morphisms d* are
projections to C' which can be thought of as source and target maps.

2 Initial and terminal objects

In this section we will see the notion of initial and terminal objects in terms of quasi-categories.
This will later be used to define (co)limits in quasi-categories.

Definition 2.1. Let C' be a quasi-category and z, y objects of C'. we define the mapping space of
x and y as the pullback,

mapg(w,y) —— C&
A Y oo
The following definition can be found in Land [2]

Definition 2.2. Let C' be a quasi-category. An object i of C' is said to be initial if for all objects y
of C' the mapping space mapc (i, y) is contractible. An object ¢ of C' is said to be terminal if for all
objects y of C' the mapping space mapc(y, t) is contractible.

From here on we will just look at the case for terminal objects as all the ideas for initial objects
follow dually. We have the following alternative characterizations of and terminal objects thanks
to [2].

Lemma 2.3. Let C' be a quasi-category and ¢ and object of C' then the following are equivalent:
1. tis terminal.
2. C |t — Cis a trivial fibration.
3. For 1 < n the every lifting problem:

t

Al 9Ar 3 O

1
-
-
-
-
-
-

ATL

admits a solution.



Proof. We include the proof for the equivalence of 2 and 3. The complete proof can be found in
Land [2]. The following map

OA" % A” Ugan-1,5 A" P — A1 A°
is equivalent to the map OA"™ — A". Therefore the lifting problem,

t

Al — 5 9A" — 5 C

1
-
-
-
-
-
-

An
is equivalent to the lifting problem,

AP s O |t

l //? l

-

A" — C
Where we get a lift by part 2 of the claim. O

We get the following corollary which gives us a familiar result from category theory that
terminal objects are unique up to isomorphism.

Corollary 2.4. Let C be a quasi-category then the full subcategory of terminal objects, C.,, is
either empty or a contractible Kan complex.

Proof. Suppose Ci.,, is non empty. For all n We need to solve the following lifting problem,

OA" —— Cterm

>
A
-
-
-
-
-

-

ATZ
For n = 0 there is a solution since Cy.,, is non-empty. For n > 1 we have a lift by Lemma O

We can now prove a familiar result for initial and terminal objects. The following proposition
can be found in Land [2] (Proposition 4.1.5).

Proposition 2.5. Let X be a simplicial set and C' a quasi-category and F': X — C'a functor. If for
all objects x € X, F'(x) is terminal then F is terminal in Fun(X, C).

Proof. Here is the proof for terminal objects. We aim to solve the lifting problem.

F

T

Al 5 9A" Ly Pun(X, O)

P
.
P
-
.
P
P
.

-

ATL



For n > 1. By adjointness this reduces to solving,

XXA{”}—>X><8A"—7>C

-
-
-
-
-
-
-

X x A"

Where F' maps objects © € X to terminal objects in C. We can consider the filtration, Fj(X) =
skr(X x A™) U X x 0A™ and so we need to solve the following lifting problem,

| JOAF —— F (X)) —— C

>

-
-
-
-
-
-
-
-

| |AF ——— Fi(X)

We proceed inductively and see the composite of the top map sends a vertex to a terminal object
in C' and so the diagram admits a lift for £ since we have the map Fj,_(X) — C. Therefore
passing to the colimit over k we get the lift for the original problem. [

Corollary 2.6. Let C' be a quasi-category with a terminal object ¢. Then for a simplicial set X any
terminal object in Fun(X, C) takes values in Cyepp,.

Proof. Let ¢, be the constant functor at ¢. By [2.5|¢; is terminal in Fun(X, C'). Every terminal object
F € Fun(X, C)erm is weakly equivalent to ¢, since Fun(X, C) is a contractible Kan complex. So
for every object = € X, ¢;(x) is weakly equivalent to ¢;(z) hence a terminal object in C'. O

3 Limits and colimits

In this section we will see how limits and colimits in regular category theory can be translated to
quasi-categories. As in regular category theory there are different ways to talk about (co)limits,
here we will introduce them via universal cones over diagrams as in Land [2], we will then relate
it to the definition given in Lurie [3] as terminal/initial objects of some slice category.

3.1 (Co)limits via universal cones

Definition 3.1. Let /': X — C be a functor and x be an object of C. W define the simplical set
mapc(F, x) as the pullback,

mapc(F,r) —— Fun(X x A% C)
A T FUTL(X,C) x C

Where right map is given by,
Fun(X U{oo},C) —— Fun(X A’ C)

L

Fun(X,C) x C



Remark 3.2. If F is the functor F' = y: A? — C, that is F' is an object in C' then mapc(F, x) =
mape(y, x), the mapping space between the objects x, y.

Here we should view the functor F’ as a diagram of C' which we wish to take the limit over.
We have the following proposition from Land [2] (Proposition 4.3.2),

Proposition 3.3. mapc(F, z) defined above is a Kan complex.

Proof. We have that the right map is an inner fibration since its a fibration between quasi-
categories. Furthermore, this map is conservative. Therefore, the map on the right is a con-
servative inner fibration since fibrations are stable under pullbacks. Therefore, mapc(F,x) is a
Kan complex. O

Definition 3.4. Dual to Definition 3.1 we have the simplicial set defined by the pullback,

mapc(z, F) —— Fun(A°x X, O)
A° T) C x FUTL(X,C)

We now see the quasi-category view of universal cones over a diagram F: X — C. The
following definition is thanks to Kapulkin [1].

Definition 3.5. Let C be a quasi-category and F': X — (' a functor (a diagram). A cone under F
is a simplicial map F': X x A? — C such that the following diagram,

x -t ¢

I A

X %A

commutes. With abuse of notation we define a cone over F' as a simplicial map F': A°x X — C
such that,

x —~r ¢

| A

AV % X
commutes.

Definition 3.6. Let F': X — C be a functor (a diagram) and F,.: X x A° — C'a cone over F. F, is
universal or a colimit if for all objects x of C' the map,

mape(F, ) — mape(F, )
is a homotopy equivalence. Let F;: be a cone under F. F} is universal or a limit if the map,
mape(x, F) = mape(x, F)

is a homotopy equivalence.



We have an alternative definition of a universal cone over a diagram found in Kapulkin [1]
which follows from Proposition

Lemma 3.7. Let F.: X x A° — C' be a cone over F, we say F. is a colimit if for all n > 0 and
H: X «0A™ — C with H|x = F,., we have there exists a map X x A" — C such that,

X x 0A" —; C

-
-
-
-
-
-

X x A"

commutes. Let F}: A’ x X — C be a cone under F, we say Fjis alimitif forall H: A" x X — C
we have there exists a map A" x X — C such that,

OA™ x X —; C

-
-
-
-
-
-

A" x X
commutes.

Example 3.8. Let C be a quasi-category and F': Aj — C. The colimit of F'is called a pushout. In
this case we have Fun(A2 x A%, C) = Fun(A' x A, C)

Remark 3.9. The limit of F': A3 — C'is a pullback.

Example 3.10. Let C' be a quasi-category and D be a discrete set viewed as a category and
F: D — C be a functor. The colimit of £ is called a coproduct.

Example 3.11. Let C be a quasi-category the limit of the functor @ — C'is a terminal object in C.
This agrees with C}.,,, being contractible and below.

The following theorem is thanks to Land [2].

Theorem 3.12. Let C be a quasi-category and F': X — C be a functor (a diagram). The cone
F: X xA” — C'is a colimit if and only if it is an initial object in F' | C.

Proof. We have the commutative diagram,

FIC——=F|C
| _—
C

From an assignment we have the isomorphism F |l C=y| F| C,so the horizontal map is
an equivalence if and only if F' is an initial object. Then by Theorem 3.1.27 and Lemma 4.3.9 in
Land [2] we see that this map is an equivalence if and only if the map,

mapc(F,x) - mapc(F, $),

which is exactly when F is a colimit. O

10



We recover the result from category that colimits are unique up to a unique isomorphism.

Theorem 3.13. Let C be a quasi-category and F': X — C be a functor (a diagram). Then the full
subcategory of colimits F' | C'is either empty or a contractible Kan complex.

Proof. This proof is similar as for initial and terminal objects. O
This reflects the case for regular category theory since when we pass to the homotopy cat-
egory of a quasi-category the subcategory of colimits being a Kan complex means there exist

isomorphisms between the all the objects of the homotopy category of that subcategory, It being
contractible means these choices are unique.

Remark 3.14. There is also a definition of colimits in terms of representable functors F': C' — Spc
where Spc is the category of spaces. We will not talk about it here but details can be found in
Land [2].

Remark 3.15. All the results stated above can be dualised to limits.

Definition 3.16. We call a simplicial set small it is weakly equivalent to a simplicial set where
collection of non-degenerate simplicies can form a set. We say a quasi-category has all small
colimits if for all finite simplicial sets X and functors F': X — C' there exists a universal cone.

We include the following result without proof but that can be found in Land [2] (Proposition
4.3.28)

Proposition 3.17. If a quasi-category C has all coproducts and pushouts then it has all small
colimits.

3.2 Adjunctions

We can characterise adjunctions using slices and initial object which we present here, however,
there is a standard definition which we will not include here since we haven’t spoke about
(co)cartesian fibrations. You can find the definition in Kapulkin [1].

The following is

Definition 3.18. Let A, B, C' be quasi-categories and f: B — A and g: C — A be functors. We
define the slice f | g as the pullback,

BxC T) Ax A
Remark 3.19. f | g defined above is a quasi-category and there are projections ey: f | g = C
ande,: f |l g— B.

Definition 3.20. Let C' and D be quasi-categories and F': C' = D, G: D — C then F' I (G is an
adjunciton of quasi-categories if and only if there is an equivalence,

FlD=C|GaG,
over D x C.

Proposition 3.21. Let C' and D be quasi-categories and G: C' — D be a simplicial map. G has a
left adjoint if and only if for each 2 € C' the quasi-category = | G has an initial object.
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